
p1

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Satellite Forms
KnowledgeBase

© 2010 Thacker Network Technologies Inc.

p2

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

p3

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Table of Contents

Introduction 6
Known Issues 9
 Bitmap buttons behave differently on different PalmOS versions 9
 DLL error when installing application at Hotsync 12
 Error compiling PocketPC target on PC with ActiveSync 4.0 13
 Error locating third party PocketPC extensions when loading project 16
 Error: Referenced control not on current page 17
 Find In Project does not always work 18
 Known Issues for Satellite Forms 6.1 19
 PocketPC device crashes when Symbol control used in app on non-Symbol
PPC device

21

 Problem with alternate-shape checkboxes in PocketPC targets created from
Palm target

22

 Error C016: Method 'Controls.SetPosition' takes 4 param(s) : 1 specified 23
 SocketScan PalmOS control does not work with laser SDIO scanner 25
 Bug in Binarysearch function with PocketPC PDB 26
 PromptCustom may cut off some text on PocketPC 27
 PocketPC target requires icon bitmap to compile even though it is not used 28
 Problems printing scripts in App Designer 29
 PocketPC app is relaunched after it is closed 30
 An invisible 'hotspot' button is still clickable on PocketPC 31
 Ink control does not allow bitmap overlay on PocketPC 32
 PocketPC CDB application cannot handle more than 127 fields per table 33
 PocketPC PDB listbox problems with more than 127 table fields 34
 Pen tap on Text or Lookup control generates 2 OnPenDown events on
PocketPC

35

 Cannot set droplist caption in code on PocketPC 36
 Form Scrollbars do not Appear Automatically in PocketPC 37
 Form needs to be tapped by pen before accepting keyboard input on PocketPC 38
 Deleting a record causes 'Error 30: Table won't open or invalid' on PocketPC
PDB

39

 Janam XP20/XP30 scanner powers off but needs to be reset to turn back on 40
 Symbol MC50 scanner shows Error Enabling Scanner Library after scanning for
a while

41

 PocketPC PDB problems filtering a record using a 10 digit numeric field 42
 Binarysearch function is not case sensitive on PocketPC PDB 43
 Binarysearch function returns incorrect row number when no match on
PocketPC PDB

44

 PocketPC RemoveFilter function does not remove filter on droplist table 45
 PocketPC project settings automatically change to MDB desktop DB format
when project is loaded

46

 Windows Vista Compatibility Issues 47
How-To Guides 49
 How To use SatSync to send data to the Palm device 49
 How To use different platform targets for PocketPC applications 50

p4

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

 How To use Global Functions & Subs to replace extension functions not
available on the current target platforms

52

 How To Install the SatForms Runtime for PocketPC Programmatically 54
 How To make Satellite Forms 6.1 PocketPC applications launch faster 56
 How To use color bitmaps in your application 58
 How To use SatSyncPPC to send data to the PocketPC device 62
 How To use the Ink View OCX to display uploaded signatures on the PC 63
 How To Install SatForms PocketPC Runtime to multiple handhelds 73
 How To Install the SatForms Runtime for Palm silently 77
 How To use the SatForms ActiveSync control with Delphi 79
 How To Create an Installer for your SatForms 6.x PocketPC Applications 83
 How To support multiple languages using build targets 94
 How To Change a control color using SFControlMagic 96
 How To use the PocketPC Emulator with Satellite Forms 97
 How To use PalmDB (PDB) tables in a PocketPC application 100
 How To use High Density Bitmaps in PalmOS applications 103
 How To use High Density Icons for your PalmOS applications 105
 How To support Expandable Screens in PalmOS applications 107
 How To Move and Resize Controls at Runtime 118
 How To use the SFConvertPDB utility 120
 How To use SatSyncPPC to sync PocketPC data 127
 How To Change Control Fonts at Runtime 129
 How To Enable a User to Interrupt a Closed Loop 131
 How To Bundle the SatForms PocketPC runtime engine with your app 133
 How To Create an Installer for your SatForms 7 PocketPC Application 135
 How To Create a shortcut to your PocketPC application 149
 How To Implement a Quick Find feature 152
 How To Use OnPenDown/OnPenUp Scripts to Detect Pen Taps on Controls 154
 How To Limit Edit Control Input to Numeric Only 156
 How To Force Input To ALL CAPS 158
 How To Dial a Phone Number Using the LaunchURL Extension 160
 How To Send an Email Message Using the LaunchURL Extension 161
 How To Commit Table Data to Storage Immediately 162
 How To Make PocketPC PDB Apps Close Faster 166
 How to Beam Files via IR or Bluetooth on PocketPC 169
 How To Sync Satellite Forms Data to a Linux Server With jSyncManager 171
 How To Use the MSR Attachment with Janam XP Scanners in Satellite Forms 174
 How To Insert New Records Into a Sorted Table 175
 How To Use Google Maps for Windows Mobile from your Satellite Forms
application

177

 How To Use a Specific Connection using ConnectionMgr 180
 How To Enable Newer 2D Barcode Types on Janam Scanners 182
 How To Change The CreatorID of a Palm Extension PRC To Match Your App 185
QuickStart Guides 189
 Barcode Scanning on Janam XP PalmOS Scanners 189
 Barcode Scanning on Symbol Windows Mobile/PocketPC Scanners 196
 Barcode Scanning on Aceeca Meazura PalmOS Scanners 203
 Barcode Scanning on Intermec Windows Mobile/PocketPC Scanners 209
 Barcode Scanning on Unitech Windows Mobile/PocketPC Scanners 215

p5

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

p6

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Introduction

The Satellite Forms KnowledgeBase is a searchable collection of known problems and solutions,
as well as How-To guides for Satellite Forms. It covers Satellite Forms 6.x, 7.x and 8.x.

Known problems and suggested solutions are listed in the Known Issues category. How-To
guides are listed in the How-To category.

You can search the KnowledgeBase by keyword, via the Index tab, or search the full text via the
Search tab.

The KnowledgeBase is available online at http://www.satelliteforms.net/knowledgebase.htm and
can also be downloaded as a Windows help file for offline use.

If you encounter a suspected bug or other issue with Satellite Forms, and cannot locate a
solution in the KnowledgeBase, we encourage you to report it to our support department, via the
technical support request form on our website: http://www.satelliteforms.net/supportform.htm

Revision History

Versi
on

Updated
Date

Description of changes

V2.3 June 29, 2010 Added How To Use Google Maps for Windows Mobile from your Satellite
Forms application
Added How To Use a Specific Connection using ConnectionMgr
Added How To Enable Newer 2D Barcode Types on Janam Scanners
Added How To Change The CreatorID of a Palm Extension PRC To Match
Your App
Updated several articles to mention new information for Satellite Forms
8

V2.2 June 26, 2008 Added How To Insert New Records Into a Sorted Table
Added How to Beam Files via IR or Bluetooth on PocketPC to revision
history (article added in V2.1)

V2.1 May 16, 2008 Added Windows Vista Compatibility Issues
Added How To Sync Satellite Forms Data to a Linux Server With
jSyncManager
Added How To Use the MSR Attachment with Janam XP Scanners in
Satellite Forms
Updated Barcode Scanning on Symbol Windows Mobile/PocketPC
Scanners with information about compatibility with the Janam XM60
scanner

V2.0 Dec 3, 2007 Added new QuickStart Guides for Barcode Scanning with Janam XP
PalmOS scanners, Symbol Windows Mobile/PocketPC scanners, Aceeca
Meazura PalmOS scanners, Intermec Windows Mobile/PocketPC scanners
, and Unitech Windows Mobile/PocketPC scanners
Updated several How To and Known Issues articles with new information
relating to improvements in Satellite Forms 7.1

http://www.satelliteforms.net/knowledgebase.htm
http://www.satelliteforms.net/supportform.htm

p7

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

V1.9 Sept 13, 2007 Added How To Commit Table Data to Storage Immediately
Added How To Make PocketPC PDB Apps Close Faster

V1.8 July 11, 2007 Updated several How To and Known Issues articles including How To use
the SFConvertPDB utility
Added How To Implement a Quick Find feature
Added How To Use OnPenDown/OnPenUp Scripts to Detect Pen Taps on
Controls
Added How To Limit Edit Control Input to Numeric Only
Added How To Force Input To ALL CAPS
Added How To Dial a Phone Number Using the LaunchURL Extension
Added How To Send an Email Message Using the LaunchURL Extension
Added PromptCustom may cut off some text on PocketPC
Added PocketPC target requires icon bitmap to compile even though it is
not used
Added Problems printing scripts in App Designer
Added PocketPC app is relaunched after it is closed
Added An invisible 'hotspot' button is still clickable on PocketPC
Added Ink control does not allow bitmap overlay on PocketPC
Added PocketPC CDB application cannot handle more than 127 fields per
table
Added PocketPC PDB listbox problems with more than 127 table fields
Added Pen tap on Text or Lookup control generates 2 OnPenDown
events on PocketPC
Added Cannot set droplist caption in code on PocketPC
Added Form Scrollbars do not Appear Automatically in PocketPC
Added Form needs to be tapped by pen before accepting keyboard input
on PocketPC
Added Deleting a record causes 'Error 30: Table won't open or invalid' on
PocketPC PDB
Added Janam XP20/XP30 scanner powers off but needs to be reset to
turn back on
Added Symbol MC50 scanner shows Error Enabling Scanner Library after
scanning for a while
Added PocketPC PDB problems filtering a record using a 10 digit numeric
field
Added Binarysearch function is not case sensitive on PocketPC PDB
Added Binarysearch function returns incorrect row number when no
match on PocketPC PDB
Added PocketPC RemoveFilter function does not remove filter on droplist
table
Added PocketPC project settings automatically change to MDB desktop
DB format when project is loaded

V1.7 February 1,
2007

January 26,
2007

Updated How To use the PocketPC Emulator with Satellite Forms
Added Bug in Binarysearch function with PocketPC PDB
Updated Error compiling PocketPC target on PC with ActiveSync 4.0
Added SocketScan PalmOS control does not work with laser SDIO
scanner
Added How To Implement a Quick Find feature
Added How To Create a shortcut to your PocketPC application
Updated How To Create an Installer for your SatForms 7 PocketPC
Application

p8

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

V1.6 November 3,
2006

Added How To Bundle the SatForms PocketPC runtime engine with your
app
Added How To Create an Installer for your SatForms 7 PocketPC
Application

V1.5 October 2,
2006

September
18, 2006

Added Error C016: Method "Controls.SetPosition" takes 4 param(s) : 1
specified
Added How To Change Control Fonts at Runtime
Added How To Enable a User to Interrupt a Closed Loop
Added How To use PalmDB (PDB) tables in a PocketPC application
Added How To use High Density Bitmaps in PalmOS applications
Added How To use High Density Icons for your PalmOS applications
Added How To support Expandable Screens in PalmOS applications
Added How To Move and Resize Controls at Runtime
Added How To use the SFConvertPDB utility
Added How To use SatSyncPPCPDB to sync PocketPC data

V1.4 February 17,
2006
February 16,
2006

Added How To use the PocketPC Emulator with Satellite Forms
Reinstated How To make Satellite Forms 6.1 PocketPC applications
launch faster "SYS_POSIDX" article
Added How To support multiple languages using build targets
Added Problem with alternate-shape checkboxes in PocketPC targets
created from Palm target
Added How To Change a control color using SFControlMagic

V1.3 December 7,
2005

Added How To Create an Installer for your PocketPC Application article

V1.2 December 5,
2005

Added article on using SF ActiveSync control with Delphi
Removed the "SYS_POSIDX" article

V1.1 November 17,
2005

Added articles on bitmap buttons, ActiveSync 4.0, PocketPC targets,
and PalmOS Runtime silent installation

V1.0 November 4,
2005

First release

Copyright (C) 2005, 2010 Thacker Network Technologies Inc.

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p9

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Known Issues
Bitmap buttons behave differently on different
PalmOS versions
Problem: Bitmap buttons behave differently on different PalmOS versions. To create
graphical button controls, developers often use a "clear" button control (a visible button with no
label and no border) with a bitmap control overlaid on top, referred to herein as a bitmap button.
This enables you to design more visually appealing applications. However, the behaviour of
bitmap buttons unfortunately differs depending on the version of PalmOS on the device.

With PalmOS versions prior to 4.0, a clear button placed underneath a bitmap control would
receive the pen tap on the form, thus enabling you to take action when the user tapped on the
bitmap image. However, starting with PalmOS 4.0, PalmSource changed this default behaviour
so that the foreground control receives the pen tap. In this case, the pen tap would be directed
to the bitmap control, which does not respond to click events, thus nothing would happen when
the user tapped on the bitmap image. For PalmOS 4.0 and higher devices, including PalmOS 5.x
devices, the clear button must be placed overtop of the bitmap control in order to receive the
pen taps from the user.

Solution: If your application is designed solely for devices running PalmOS 3.5, you can
place clear buttons underneath bitmap controls in order to implement bitmap buttons in your
application. It is unlikely, however, that many applications are intended solely for PalmOS 3.5
devices.

If your application is designed solely for devices running PalmOS 4.0 or higher, for example
PalmOS 5.x devices only, then you can implement bitmap buttons by placing the clear button
controls overtop of the bitmap controls.

If you wish to support all PalmOS devices running PalmOS 3.5 and higher, there are four options
for implementing bitmap buttons:

1. "Button Sandwich" option

In order to support bitmap buttons on PalmOS 3.5 and higher devices, you can place clear
button controls both underneath the bitmap control and overtop the bitmap control. We use the
term "button sandwich" as the bitmap control is "sandwiched" between two clear button controls.
Often, developers will have one of the button controls in sandwich call the .execaction method of
the other button control, instead of duplicating the action or OnClick script on both buttons. This
makes code maintenance easier since you do not need to make changes to both button controls.

This is the simplest and most efficient method to implement bitmap buttons that behave the
same regardless of the PalmOS version.

2. OnPenDown/OnPenUp handling

Rather than implementing bitmap buttons with a clear button control, you can handle the pen
down and pen up events on the form directly. This enables you to process pen taps within the
bounds of the bitmap control without using a clear button at all. While this method offers the
advantage of working the same across all PalmOS versions, it does have some distinct
disadvantages that may make it impractical in your application. In particular, the
OnPenDown/OnPenUp scripts needed to handle the pen taps are much more complex than using
a clear button or button sandwich, especially when you have more than one bitmap button on a

p10

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

form. As well, the bitmap control is not visually inverted when the pen is touching the screen, as
it is when clear buttons are used, so there is less visual feedback to the user that tapping on the
bitmap will make it act like a button.

Part of the complexity comes from the fact that in order to properly behave like a button, you
must track where the pen touches the screen (in the OnPenDown event) and follow it until it is
lifted from the screen (the OnPenUp event), and only take action if the pen both touched and
was lifted from the correct screen coordinates. If the pen touches down in the desired screen
location, but the user slides it away out of the bitmap location before lifting, you should not
consider that a valid pen "tap".

A sample set of OnPenDown and OnPenUp scripts to handle a "home" icon in the upper left
corner of the screen is presented below. They use a pair of global variables named gPenX and
gPenY.

'OnPenDown track pen for home icon
GetPenStatus(gPenX, gPenY)
if (gPenX >= 146) and (gPenY <= 12) then
 while GetPenStatus(gPenX, gPenY) = true
 'do nothing except update the gPenX and gPenY location vars for OnPenUp checking
 wend
endif

'OnPenUp track pen for home icon
if (gPenX >= 146) and (gPenY <= 12) then
 beep(7) 'click
 forms("Main").show 'go home!
endif

As you can see, adding support for multiple bitmap buttons using this method will soon become
unwieldy, as you will need to track multiple bitmap location boundaries.

3. SFOnClick custom control

SFOnClick is a custom control extension available from PalmDataPro. See the SatForms
Solutions Guide entry for SFOnClick here: http://www.satelliteforms.net/solutions/?10054

SFOnClick can be used to implement bitmap buttons that behave the same on PalmOS versions
3.5 and higher. However, this is again more complex than using the button sandwich approach,
and requires the use of a commercial extension. In addition, the bitmap control is not inverted
visually when the pen is touching it, thus there is less visual feedback to the user. See the
sample application that comes with SFOnClick for implementation details.

4. SFBitmapView/SFJPGView custom control

SFBitmapView (http://www.satelliteforms.net/solutions/?10061) and SFJPGView (
http://www.satelliteforms.net/solutions/?10035) are custom controls available commercially
from PalmDataPro that present an alternative to the standard bitmap control in Satellite Forms.
One of the options that these controls have is the ability to respond directly to pen taps, by
providing an OnClick event for the control. The disadvantage of using this approach is that it
requires the purchase of a custom control extension.

Keywords: bitmap, button, sandwich, onclick, icon

KB ID: 10023

http://www.satelliteforms.net/solutions/?10054
http://www.satelliteforms.net/solutions/?10054
http://www.satelliteforms.net/solutions/?10061
http://www.satelliteforms.net/solutions/?10035

p11

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Updated: 2006-10-02

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p12

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

DLL error when installing application at Hotsync
Problem: Your PalmOS application uses third party extensions. When trying to install the
application you receive the following error message: Satellite Forms DLL error 1050: Couldn't
copy file to install directory.

Solution: Your issue with the third party extension and DLL error is most likely the result of
the extension file location changing with SatForms V5 and higher.

In versions older than 5.x, you would have placed the INF and PRC and possible BMP files in
\Satellite Forms\Extensions\{manufacturer}

For Satellite Forms 5.x and higher, they need to go in a new location (as a result of PocketPC
support in SatForms).

INF and BMP file:
\Satellite Forms\Extensions\{manufacturer}

PRC file (for a PalmOS extension):
\Satellite Forms\Extensions\{manufacturer}\Palm

SFX file (for a PocketPC extension):
\Satellite Forms\Extensions\{manufacturer}\PPC_ARM

Close App Designer, move the files, then restart App Designer and hotsync again to correct the
error and install the application.

Keywords: DLL, error, Hotsync, extension, 1050

KB ID: 10011
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p13

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Error compiling PocketPC target on PC with
ActiveSync 4.0
Problem: On a development PC with ActiveSync 4.0, attempting to compile a PocketPC
target with CDB databases fails with an error message "SFrmUt Error - Error - Unable to delete
\Temp|SFTempTable.cdb. Path: \Temp\SFTempTable.cdb". It is followed by a few more error
messages.

Solution: Microsoft ActiveSync 4.0 comes with new Windows Mobile 5 based devices, while
ActiveSync 3.x comes with Windows Mobile PocketPC 2002/2003/2003SE devices. This problem
occurs when trying to compile an application with a PocketPC target (PocketPC 2002, PocketPC
2003, WinMobile 5, WinCE.NET) that uses the Microsoft CDB device database format to any
PocketPC device. ActiveSync 4.0 is required to synchronize WinMobile 5 devices.

This article is updated Feb 1, 2007 with an easier solution to this problem.

There are known problems using Microsoft CDB databases on Windows Mobile 5 devices with
ActiveSync 4.x. These problems are caused by changes to ActiveSync that Microsoft made in
version 4.x, which is required for WM5 devices. With Satellite Forms, one way that this problem
manifests itself is when you go to compile a PocketPC project that includes CDB database tables,
with a connected WM5 device/emulator. App Designer attempts to use the CDB database
conversion services of ActiveSync to generate the device database tables, and ActiveSync 4 will
error out, causing the device db creation to fail. This results in a somewhat cryptic error in App
Designer: "SFrmUt Error - Error - Unable to delete \Temp|SFTempTable.cdb. Path:
\Temp\SFTempTable.cdb". That is usually followed by a few more error messages. The end
result is that the compile process fails due to the device database creation failure.

This is not an issue with Satellite Forms 7 and higher which supports PDB database
files on PocketPC. PDBs offer numerous advantages over CDBs and we highly
recommend that solution, but if you're using SF 6.x then the PDB solution will not be
available to you.

[Old Information - Obsolete with Satellite Forms 8]

The original KB article on this topic discussed a possible solution of uninstalling AS4, installing
AS 3.8, and then installing AS4 over that without uninstalling. Sometimes this works,
sometimes it does not. It is also difficult to locate the older ActiveSync 3.8 installer these days.

Now, a fellow Satellite Forms developer Tim Fischer informed us of a new, simpler way to solve
this problem. We've tested this solution
here, and it appears to work for all of our tests. If you are faced with this issue, we encourage
you to try this suggestion and report your results.

The CDB compile problem can be solved by applying some registry changes to the PC that the
PocketPC device is connected to. Create a text file named AS4CompileRegFix.reg with these
contents:

--- cut here ---

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows CE Services\SharedDLLs]
"C:\\Program Files\\Microsoft ActiveSync\\cefstore.dll"=dword:00000000
"C:\\Program Files\\Microsoft ActiveSync\\adofiltr.dll"=dword:00000000

p14

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

"C:\\Program Files\\Microsoft ActiveSync\\inetrepl.dll"=dword:00000000
"C:\\Program Files\\Microsoft ActiveSync\\inkreg.dll"=dword:00000000
"C:\\Program Files\\Microsoft ActiveSync\\pwdreg.dll"=dword:00000000
"C:\\Program Files\\Microsoft ActiveSync\\pwiofcnv.dll"=dword:00000000
"C:\\Program Files\\Microsoft ActiveSync\\pwireg.dll"=dword:00000000
"C:\\Program Files\\Microsoft ActiveSync\\pwoffc nv.dll"=dword:00000000

--- cut here ---

Disconnect the PocketPC device. Apply these registry changes by double-clicking on the .reg file
you just created. You will be asked to confirm the registry changes. Once they have been
confirmed, you can reconnect the PDA, and you should be able to successfully compile your
PocketPC project without any CDB creation errors!

If this tip helps you out, be sure to let Tim know:

Tim Fischer
Enlighten Development LLC
Secure Solutions Since 1991

edev@hotmail.com
http://www.enlighten-dev.com

The older KB article information is archived below.

This error only occurs on development PCs that did not have a version of Microsoft ActiveSync
3.x installed prior to version 4.0.

A workaround to solve this problem on the development PC is to do the following:

1. Uninstall Microsoft ActiveSync 4.0 using the Add/Remove control panel. Restart the PC if
prompted.

2. Install Microsoft ActiveSync 3.8 downloaded from the Microsoft PocketPC support website:

 http://www.microsoft.com/windowsmobile/downloads/activesync38.mspx

3. Without uninstalling ActiveSync 3.8, install ActiveSync 4.0 (i.e. upgrade to AS 4.0). The
installer should detect the current version and ask if you wish to replace the current installation
of ActiveSync. Click Next to proceed with the upgrade. Restart the PC if prompted.

You should now be able to successfully compile PocketPC targets using Microsoft ActiveSync 4.0,
to PocketPC, WinMobile 5, and WinCE.NET targets. You should be able to successfully sync with
all of your PocketPC devices.

Keywords: ActiveSync, Windows Mobile 5, WinMobile 5, PocketPC, SFTempTable.cdb,
SFrmUt

mailto:edev@hotmail.com
http://www.enlighten-dev.com
http://www.microsoft.com/windowsmobile/downloads/activesync38.mspx

p15

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

KB ID: 10022
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p16

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Error locating third party PocketPC extensions when
loading project
Problem: You may receive an error locating third party PocketPC extensions when loading a
project that uses the extensions, or you may see the extension listed in the extension manager
but it is greyed out and unavailable for use.

Solution: Starting with Satellite Forms 6.0, there has been a minor change in the format of
the extension INF file for PocketPC extensions. SatForms 6.x will not read the INF file properly
for older PocketPC extensions, and therefore cannot load the extension when the project loads.
The extension INF files for extensions included with Satellite Forms were updated to use the new
INF format, so they are loaded properly.

Fortunately, it is easy to fix this problem for older third party extensions:

1. Close App Designer.
2. Make a backup of your PocketPC extension INF files. They are located in \Satellite
Forms\Extensions\{manufacturer} where {manufacturer} would be something like
PalmDataPro. Set the file extension of the backup to something other than .INF.
3. Open the INF file in a text editor, locate the line that starts with "Target=".
4. Change the string "PPC_2002_ARM" to "PPC_ARM".
5. Save the modified INF file.
6. Rename the \Extensions\{manufacturer}\PPC_2002_ARM folder to PPC_ARM.
7. Restart App Designer and your project should find the extension properly.

Keywords: extension, PocketPC, INF, error

KB ID: 10012
Updated: 2005-11-17

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p17

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Error: Referenced control not on current page
Problem: Your application displays an error message Error: Referenced control not on
current page

Solution: What the error means is that a script on that form is accessing a control that is
not on the current page of the form. For example, if you have a multipage form with a control
named editName on the second page of the form, and you try to access that control when you
are on the first page of the form, that error message will be displayed.

You must take care to ensure you are on the same page as the control you are accessing, by
using the forms().currentpage property, eg:

if forms().currentpage = 1 then
 'we are on second page (zero indexed) so we can access control
 editName = "Jim"
endif

This applies to all scripts on the form, such as AfterOpen, AfterLoad, OnValidate, etc., as well as
global subs and functions.

Keywords: error, control, page, currentpage

KB ID: 10013
Updated: 2006-10-02

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p18

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Find In Project does not always work
Problem: Find In Project does not always work. If you select 'Find in Project' from the Edit
menu, and enter a string, the program will search the current script page. If the string is found
on the page, it will then continue if you select 'Find Next'. If it is not on that page, it will go no
further & say it is not found. This is not the desired behaviour: it should go on and search the
next script, and continue on throughout the project.

Solution: A workaround is to use the Edit | Replace function to find without replacing.
Select the "Replace In: Entire project" option, but click on Find Next instead of Replace. A
keyboard shortcut to the Replace function is CTRL-H.

Status: OPEN This bug has not been resolved yet.

Keywords: Find, Replace, Search, Edit

BugID: SF-00091

KB ID: 10017
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p19

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Known Issues for Satellite Forms 6.1
Known Issues for Satellite Forms 6.1

- If a SatForms application has custom menubars defined, users must add
 at least one item to the custom menubar before downloading the
 application on Palm devices. Otherwise, a Fatal Exception is displayed
 when launching the menu on Palm. (24393, 24037)

- A limitation of the ActiveX control used for the App Designer table
 editor allows only tables with fewer than 514,100 characters to be
 displayed or saved. Table data that exceeds 514,100 characters will be
 truncated and saved in a temporary file. (25115)

- For the PPC platform, there is a known issue with the Symbol Control
 barcode scanner extension. When an application containing that
 extension is run on a non-Symbol device, an error message is displayed
 and the application will not run. See the Satellite Forms
 KnowledgeBase for the solution.

- Due to a known issue with Pocket PC 2002 devices, you must close
 an application on the device before you can synchronize the
 application.

- Due to limitations in the Palm OS, clear buttons must be
 implemented differently, depending on the Palm OS version. For
 Palm OS 3.5 or earlier, the clear button must be set to the back.
 For Palm OS 4.0 or greater, the clear button must be set to the
 front. You can place clear buttons both behind and in front of the
 overlapping control in order to work on both Palm OS 3.5 and Palm OS
 4.0 and higher. (14514)

- The application definition database (ExxxxMMnn$AppName.pdb) contains
 definitions of objects that runtime engines will use to render your
 Satellite Forms application on the Palm. Because the Palm OS limits
 the size of individual records to 64K, individual records in this
 database cannot exceed 64K in size. App Designer will display an
 error message when this limit is exceeded. If your application
 exceeds this limitation, you will need to separate the information
 into multiple fields.

 Objects that are contained in this database are: form attributes,
 control attributes, table & column attributes, and compiled scripts.

- The Bitmap and resource extensions will not work with Palm OS 5.0.

- The Bitmap extension will not compile with Palm OS 5.0 SDKs. The
 SDKs for Palm 4.1 and lower should be used.

- SF 3.1 applications can use a lot more fields in a single
 application than allowed by SF 3.5 and later. This situation may be
 corrected in future Satellite Forms versions.

- You must specify all 4 icon files in your project for Palm OS
 (large and small monochrome and color icons). Missing icons will
 appear as "hearts" on the device.

p20

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

- Applications or databases installed using HotSync Manager 4.0.0 will
 always have the backup bit set. This overrides the settings in your
 project properties. Palm has not issued a fix for this problem.

- Importing Tables containing Number fields that use "Replication ID"
 as field sizes does not work. This problem may be corrected in
 future Satellite Forms versions.

- Checkboxes on Pocket PC 2002 targets will sometimes revert to a
 height of 11 from their default height of 18. To reset the
 checkbox height to the default, click the form and then
 double-click the checkbox.

- The Symbol Control Extension's Aim() function is not supported on
 Symbol's Pocket PC 2002-based devices.

- Using "Download App & Tables to Handheld" will not rebuild the app
 if you just saved your project. If you have saved since your last
 change you must use "Rebuild All" to incorporate your recent changes
 into the app you wish to download.

- Adding a new target to your project will not inform App Designer
 that it needs to save when it closes. After adding a new target to
 an App Designer project always remember to save.

- The Color Graphics extension for the Pocket PC platform uses a
 different INF file than Palm OS Color Graphics extension. Palm
 targets using this extension will not automatically transfer this
 extension to a derivative Pocket PC target.

- Changing the data source a radio button is linked to without first
 specifying an index value for the radio button will result in
 errors. Avoid errors by specifying an index value for your radio
 button.

- When compiling an application, if the App Designer stops responding
 and the following error message appears: "AppDesigner: Out of
 virtual memory", more total memory (RAM + Virtual Memory) is required
 to compile the application. Any ratio of physical memory to virtual
 memory can be used; for example, either 128MB RAM/570 MB Virtual
 Memory or 256 MB RAM/440 MB Virtual Memory.

Keywords: bugs, known issues

KB ID: 10019
Updated: 2005-11-17

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p21

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

PocketPC device crashes when Symbol control used in
app on non-Symbol PPC device
Problem: PocketPC device crashes when Symbol control used in app on non-Symbol PPC
device

Solution: There is a workaround available: our technical support department can supply you
with a "fake" version of the Symbol Integrated Scanner extension for Pocket PC that returns a
"FALSE" value for the IsSymbolUnit function. You can install this SFX file on non-Symbol
devices, and check the IsSymbolUnit function before using any of the other scanner control
methods. In this way, you can use the same application (with the special extension SFX file) on
non-Symbol devices without crashing.

We expect to resolve this in a future revision to allow the inclusion of this barcode scanner
control on non-Symbol PocketPC devices.

Status: RESOLVED This problem has been resolved with the release of an updated
SFE_Symbol_Control.sfx extension file with Satellite Forms 7.1. The SF 7.1+ versions of the
Symbol scanner control do not cause the app to crash on non-Symbol devices. Simply use this
updated SFX file instead of older ones, to prevent the crash problem.

Keywords: Symbol, PocketPC, barcode, scanner

BugID: SF-00019

KB ID: 10006
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p22

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Problem with alternate-shape checkboxes in PocketPC
targets created from Palm target
Problem: If you create a new PocketPC build target from a Palm build target, and the Palm
target includes aternate-shape checkboxes or radio buttons, those controls are not migrated
properly to the PocketPC target. The migrated alternate-shape controls become randomly sized
and located on the PocketPC form.

Solution: This is a known problem [bug ID SF-00247] in Satellite Forms 6.1.x. There is no
known solution at this time, so the options are to either:

 manually correct all affected controls after the PocketPC target has been created
 prevent the problem by temporarily unchecking the alternate-shape property for all of these

controls in the Palm target before creating the PocketPC target, then re-enabling the
alternate-shape property after the PocketPC target has been created

Status: RESOLVED This bug is resolved with Satellite Forms 8.

Keywords: alternate shape, checkbox, radio button, target, PocketPC, platform

BugID: SF-00247

KB ID: 10029
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p23

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Error C016: Method 'Controls.SetPosition' takes 4
param(s) : 1 specified
Problem: Error C016: Method "Controls.SetPosition" takes 4 param(s) : 1 specified

Solution: This error message may appear when compiling an application using Satellite
Forms 7, even if the same application compiled okay under Satellite Forms 6. The problem
stems from a conflict between an extension that includes a SetPosition method and the new
.SetPosition method for standard form controls introduced with SatForms 7.

The Slider and Color Slider controls included with Satellite Forms include SetPosition and
GetPosition control methods. We have modified the extension INF files for Slider and Color
Slider to rename those methods with SatForms 7. They have been renamed SldSetPosition and
SldGetPosition, and the SetMinMax function was renamed to SldSetMinMax as well. If your
application uses the Slider or Color Slider controls, you will need to perform a find and replace
operation on your script code, to use the updated extension function names. That will eliminate
the compiler error as described above.

1. With your application opened in App Designer, go to the Scripts tab, open the Global section
(by clicking on the + character), then select Variables. The script edit window should open.
It does not matter if the global variables section is blank or not.

2. Select Edit | Replace from the menu, or press the CTRL-H hotkey, to bring up the Find &
Replace dialog. In the Find What: field, enter SetPosition, and in the Replace With: field
enter SldSetPosition. Click the Entire Project option in the Replace In selection, and then
click on the Replace All button.

All instances of SetPosition in your script code will be replaced with SldSetPosition.

3. Repeat the process to replace GetPosition with SldGetPosition. Repeat also to replace
SetMinMax with SldSetMinMax.

You should now be able to compile your application that uses the Slider or Color Slider control,
without generating the compiler error complaining about the SetPosition taking a different
number of parameters.

Attention LSListBox Control Users

The LSListBox custom control from PalmDataPro also includes a function named SetPosition, and
will therefore generate the same error when you compile that application that uses LSListBox
under Satellite Forms 7. To solve this problem you must modify both the extension INF file and
update your script code. Perform the following steps to make the changes so that the application
compiles under SatForms 7 with the LSListBox control.

p24

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

1. Close App Designer. Modifications to extension INF files must be done while App Designer is
closed, or it will not see the changes.

2. Locate the LSListBox.inf file in the \Satellite Forms 7\Extensions\{manufacturer} folder, for
example \Satellite Forms 7\Extensions\PalmDataPro. Open the INF file in a text editor (suc h
as Notepad).

3. Scroll down to the list of extension methods, and edit the name of the SetPosition function to
be LSLSetPosition. Save and close the LSListBox.INF file.

4. Restart App Designer, and reload your application project.
5. Go to the Scripts tab, open the Global section (by clicking on the + character), then select

Variables. The script edit window should open. It does not matter if the global variables
section is blank or not.

6. Select Edit | Replace from the menu, or press the CTRL-H hotkey, to bring up the Find &
Replace dialog. In the Find What: field, enter SetPosition, and in the Replace With: field
enter LSLSetPosition. Click the Entire Project option in the Replace In selection, and then
click on the Replace All button. All instances of SetPosition in your script code will be
replaced with LSLSetPosition.

You should now be able to compile your application that uses the LSListBox control in Satellite
Forms 7.

Note that if your application uses both the Slider/Color Slider control and the LSListBox control,
you should use the Replace button in the Find & Replace dialog, instead of Replace All. That will
enable you to search through your code and replace the Slider calls with SldSetPosition, and skip
the LSListBox calls. You can then go back and run the replace operation again replacing the
LSListBox SetPosition calls with LSLSetPosition. Note that with LSListBox V2.2 and higher the
necessary changes have been made to the INF file.

Keywords: error, C016, SetPosition, GetPosition, Slider, LSListBox

KB ID: 10040
Updated: 2007-07-11

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p25

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

SocketScan PalmOS control does not work with laser
SDIO scanner
Problem: SocketScan PalmOS control does not work with laser SDIO scanner

Solution: An updated version of the Satellite Forms SocketScan control for PalmOS is
available that adds support for the Socket laser SDIO barcode scanner (SDSC 3M). No update is
needed for the PocketPC SocketScan control.

Download the updated SocketScan extension for PalmOS from the Products & Support | Support
Files | Software Updates & Patches section of the Satellite Forms website:
http://www.satelliteforms.net/cat16_1.htm

Unzip the SFE_SocketScan.prc extension file from the zip file that you downloaded. Place that
prc file in the

\Satellite Forms 7\Extensions\Standard\Palm\
folder. Hotsync that updated prc file to your PalmOS devices to overwrite the older extension.

NOTE: If you use the Transmit Code ID feature of the Socket scanners that returns the
symbology (barcode type) of the barcode that was scanned, you may need to modify your
scanner initialization to ensure that you enable this feature. Do not rely on it being set properly
just by resetting the scanner to default settings. Enable the Transmit Code ID feature explicitly
by setting parameter #45, to the value 2 which retuyrns the "Symbol ID code". Setting it to 0
will return no code ID char, and setting it to 1 will return an AIM ID string. Most developers
want the Symbol ID Char if anything.

eg: error = SocketScan1.SetScanParam(45, 2, true|false)

To retain that setting across power cycles you need to set the Permanent flag to True. If you are
setting this parameter every time the scanner is intialized (as recommended) then there is no
need to set the Permanent flag to True, just leave it False.

Status: RESOLVED

Keywords: Socket, SocketScan, scanner, barcode, laser, SDIO, SDSC 3M

KB ID: 10046
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/cat16_1.htm
http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p26

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Bug in Binarysearch function with PocketPC PDB
Problem: There is a bug (#SF-00328) in the SatForms 7.0.0.020 Binarysearch function with
PocketPC PDB. The binarysearch function returns the row number of the matching record if a
match is found, or the row number where a match should appear in the sorted table if a match
was not found (this is called the sort position). The bug is that if the binarysearch function does
not find a match, it returns the sort position row + 1. For example, if the correct sort position
should be row 5, the PocketPC PDB runtime is currently returning an incorrect value of 5 + 1 =
6.

Solution: This bug applies to Satellite Forms 7.0.0.020 on the PocketPC platform using the
PDB device database format. It does not affect SatForms 7.0 for PalmOS, nor does it affect the
PocketPC platform when using the Microsoft CDB device database format.

We will have this bug corrected in the next maintenance release of Satellite Forms 7.

In the meantime, you may apply a workaround in your script code to handle this bug, in the
following manner. What you can do is when you use the Binarysearch function, test if the search
found a match or not. If it does find a match, the returned FoundRow will be correct. If it does
not find a match, and your app is running on the Satellite Forms 7.0.0.020 runtime engine in
your PocketPC PDB build target, subtract one from the FoundRow to account for the erroneous
FoundRow value.

You can use a Private Global Function in the PocketPC PDB build target that returns True if the
runtime engine version is 7.0.0.020 or less, or False otherwise. If you also have PalmOS and/or
pocketPC CDB build targets, create a Private Global Function in each of those targets that always
returns False. Let's name this function IsPPCBinSearchBug. Call this global function from your
Binarysearch script to know whether you need to adjust the FoundRow value, like this:

dim bFound, iFoundRow
bFound = Tables().BinarySearch("Product", True, edFind, iFoundRow)
if (IsPPCBinSearchBug = true) and (bFound = false) then

iFoundRow = iFoundRow -1 'fix PPCPDB binsearch bug
endif

Status: RESOLVED This problem has been resolved with the release of an updated
SatForms PocketPC runtime engine with SF Patch 70002. If you have applied Patch 70002 to
your system, or are using Satellite Forms 7.1 or higher, this problem is resolved.

Keywords: Binarysearch, PocketPC, PDB, Windows Mobile, WM5, bug,

BugID: SF-00328

KB ID: 10048
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p27

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

PromptCustom may cut off some text on PocketPC
Problem: There is a bug in Satellite Forms 6.x and 7.0 for PocketPC in which the
PromptCustom function may cut off some prompt text or button text. This problem does not
affect the PalmOS platform.

Solution: A workaround for this problem is to pad some additional blank spaces to the end
of your text, in order to cause the PromptCustom function to wrap the text down to the next line.

Status: RESOLVED This problem has been resolved with the release of an updated
SatForms PocketPC runtime engine with SF Patch 70003. If you have applied Patch 70003 to
your system, or are using Satellite Forms 7.1 or higher, this problem is resolved.

Keywords: prompt, promptcustom, msgbox, messagebox, dialog, PocketPC

BugID: SF-00278

KB ID: 10049
Updated: 2007-06-28

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p28

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

PocketPC target requires icon bitmap to compile even
though it is not used
Problem: PocketPC target may require an icon bitmap to compile even though it is not used.
If you create a PocketPC target from an existing PalmOS target, and you have the Create
Launcher Application option enabled (checked) in the Project Properties of the PalmOS target,
that Project Property is also checked in the PocketPC target, but is greyed out because it does
not apply to that target. You cannot toggle that option off because it is greyed out, and an error
message appears when you go to compile the target.

Solution: The workaround is to supply an icon bitmap file even though it is not used on the
PocketPC target. Use the same PalmOS icon bitmap file from your original PalmOS build target.
This enables the compiler to complete the build process without stopping to complain about a
missing icon bitmap file. The compiler will not use this bitmap file, but will instead automatically
use a Windows .ico icon file for your app if it is found in the images folder (it must be named the
same as the .SFA project file).

Status: OPEN This bug has not been resolved yet.

Keywords: bitmap, icon, compile, project properties, create launcher icon

BugID: SF-00285

KB ID: 10050
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p29

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Problems printing scripts in App Designer
Problem: There are some problems printing scripts in App Designer, from the File | Print
menu options. Problems include:
1. App Designer continues to print scripts even when the Cancel button is clicked.
2. If you Print All Scripts to a file, it prints each script to the same filename, overwriting each

time, instead of printing them all to one long file.
3. When you print a script, there is no indication on the printout as to which form and which

event or control the script came from.

Solution: There are no worarounds or solutions to these printing problems at this time.

Status: OPEN This bug has not been resolved yet.

Keywords: print, print all

BugID: SF-00258

KB ID: 10051
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p30

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

PocketPC app is relaunched after it is closed
Problem: If a SatForms PocketPC app is running, and the user switches away to another app
without closing the SF app (for example, the user starts the File Explorer app), and then the user
taps on the SF app icon again, the app is correctly brought back to the foreground, but it is
automatically relaunched after it is closed.

Solution: There is no solution or workaround for this issue at this time.

Status: RESOLVED This problem has been resolved with the release of an updated
SatForms PocketPC runtime engine with SF Patch 70003. If you have applied Patch 70003 to
your system, or are using Satellite Forms 7.1 or higher, this problem is resolved.

Keywords: launch, icon, relaunch, restart, close

BugID: SF-00329

KB ID: 10052
Updated: 2007-06-28

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p31

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

An invisible 'hotspot' button is still clickable on
PocketPC
Problem: An invisible "hotspot" button is still clickable on PocketPC. If you have a button
control that is visible, but with no border and with no label text, a special type of "hotspot"
button is used on the PocketPC. This hotspot button always returns False to the .visible
property, but still responds to pen taps. A control should not respond to pen taps when it is not
visible, and the hotspot button should properly support the .visible property. This problem does
not affect the PalmOS platform.

Solution: There is no solution to this problem at the current time. A workaround may be to
use the form's OnPenDown/OnPenUp scripts to either detect or ignore pen taps on the screen
instead of using the hotspot button.

Status: OPEN This bug has not been resolved yet.

Keywords: button, visible, hotspot, click, pen tap, onpendown, onpenup

BugID: SF-00336

KB ID: 10053
Updated: 2007-06-28

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p32

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Ink control does not allow bitmap overlay on
PocketPC
Problem: When an ink control is placed overtop of a bitmap image on PocketPC, the bitmap
image is not visible, and cannot be used as a "template" for the ink control. On the PalmOS
platform, the bitmap beneath the ink control will be displayed and can be used as a template.
The ink control properly saves only the scribbles drawn by the user, and not the template image.

Solution: There is no solution to this problem at the current time.

Status: OPEN This bug has not been resolved yet.

Keywords: bitmap, ink, template, overlay, image, signature

BugID: SF-00341

KB ID: 10054
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p33

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

PocketPC CDB application cannot handle more than
127 fields per table
Problem: A Satellite Forms PocketPC CDB application cannot handle more than 127 fields
per table. If more than 127 fields per table are used in a PocketPC CDB application, numerous
record-oriented problems occur. The CDB database implementation cannot support more than
127 fields in a table. This problem does not occur with the PocketPC PDB database format, nor
on the PalmOS platform.

Solution: There is no solution to this problem at the current time. You must ensure that you
keep your CDB databases to no more than 127 fields per table.

Status: OPEN This bug has not been resolved yet.

UPDATE: CDB databases are not supported in Satellite Forms 8. Version 8
supports PDB handheld databases only.

Keywords: field, table, CDB, record, PocketPC

BugID: SF-00342

KB ID: 10055
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p34

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

PocketPC PDB listbox problems with more than 127
table fields
Problem: The PocketPC listbox has problems when used with tables that have more than
127 fields. While the PocketPC PDB database format can utilize up to 255 fields (columns, not
records or rows) in a table, the listbox does not display the columns correctly when used on
tables with more than 127 fields. This problem does not affect the PalmOS platform. PocketPC
applications using the CDB database format cannot handle more than 127 fields per table,
regardless of whether a listbox is used or not.

Solution: There is no solution to this problem at the current time. To avoid the listbox
display problem, ensure that your PocketPC PDB database tables have no more than 127 table
fields.

Status: RESOLVED This bug has been resolved in Satellite Forms 8.

Keywords: listbox, PDB, PocketPC, 127, field, database

BugID: SF-00342

KB ID: 10056
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p35

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Pen tap on Text or Lookup control generates 2
OnPenDown events on PocketPC
Problem: A pen tap on a Text or Lookup control generates 2 OnPenDown events on
PocketPC, instead of a single event. This does not affect the PalmOS platform, nor does it affect
other control types on PocketPC.

Solution: There is no solution to this problem at the current time. If you need to track the
number of pen taps as a count, or otherwise want to trigger a pendown script only once for these
unwanted double-tap events, you can use the following workaround:

1. Use the PenTapInControl global script to determine if the tap was within a text or lookup
control, or otherwise.

2. If the tap was in a text or lookup control, toggle a global flag variable (eg. gFlagDoubleTap =
not gFlagDoubleTap).

3. In the OnPenDown script, check the gFlagDoubleTap var and only take action when
gFlagDoubleTap = false.

4. Set gFlagDoubleTap = false in AfterOpen. When the first pen down event fires,
gFlagDoubleTap will be set True, and the script action will not fire because gFlagDoubleTap =
True. When the second pen down event fires, gFlagDoubleTap gets set back to false, and the
script action will proceed. Pen taps on other controls or on the form will not set
gFlagDoubleTap = True, therefore they will execute the script on the first tap.

Status: OPEN This bug has not been resolved yet.

Keywords: OnPenDown, OnPenUp, pen, tap, double-tap, GetPenStatus, PenTapInControl

BugID: SF-00353

KB ID: 10057
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p36

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Cannot set droplist caption in code on PocketPC
Problem: Cannot set a droplist caption via code on PocketPC, unless that caption is one of
the items in the droplist control's list table. If the caption does not exist as an item in the list,
the control caption is blank. On the PalmOS platform, any text can be used to set the droplist
control caption, regardless of whether it is included in the list table or not.

Solution: There is no solution to this problem at the current time. Unfortunately, this
problem does appear to be caused by platform differences in the way that droplist controls are
implemented on the PocketPC platform compared to the PalmOS platform. The droplist control
just does not support "unliked" captions on the PocketPC OS, whereas this is supported in the
PalmOS platform. We have not yet found an acceptable way to overcome this PocketPC OS
platform limitation in Satellite Forms.

Status: OPEN This bug has not been resolved yet.

Keywords: droplist, caption, platform, PocketPC

BugID: SF-00354

KB ID: 10058
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p37

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Form Scrollbars do not Appear Automatically in
PocketPC
Problem: Form scrollbars do not appear automatically in PocketPC applications, when the
display orientation changes or when the application is run on a device with a small square
screen. When an application designed for the standard portrait mode 240x320 QVGA PocketPC
screen is run on a device with a small square 240x240 screen, or on a landscape 320x240 QVGA
screen, a form scrollbar should automatically appear/disappear as needed. The vertical form
scrollbar allows the user to scroll down to see the rest of the form, since it does not fit on the
shorter screen.

Solution: The PocketPC ScreenSize extension can help with this problem by enabling you to
query the display dimensions, and by firing an event when the display dimensions (or
orientation) change. This allows you to dynamically adjust the controls on the form, using the
GetPosition and SetPosition methods, in order to adapt the form layout to the current screen.

However, in many cases developers would rather just allow a scrollbar to appear on the form to
handle these different display scenarios, allowing users with devices that have different display
sizes to scroll down to see the rest of the form.

Status: RESOLVED This problem has been resolved with the release of an updated
SatForms PocketPC runtime engine with SF Patch 70003. If you have applied Patch 70003 to
your system, or are using Satellite Forms 7.1 or higher, this problem is resolved. With this
updated version of the Satellite Forms runtime engine for PocketPC, form scrollbars
automatically appear and disappear as needed depending on the display size.

Keywords: scrollbar, scroll, screen, dimensions, display, size, QVGA, square, landscape,
portrait

BugID: SF-00356

KB ID: 10062
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p38

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Form needs to be tapped by pen before accepting
keyboard input on PocketPC
Problem: In certain circumstances on PocketPC devices, when a form opens it needs to be
tapped by the pen before accepting keyboard input. If it is not tapped first, the keyboard input
is ignored with a warning beep. This is a problem if your user interface relies on keyboard input,
and not pen tap input. When the form is in this state, the keyboard input does not get to the
OnKey event, as it is being ignored by the system before the InKey event gets a chance to
handle it.

The circumstances that can lead to this problem include having a hidden edit control as the
"topmost" control on the form, meaning the control that has the focus when the form opens.

Solution: A simple workaround to this problem is to make some other visible control, such
as a text label, the topmost control on the form. Select the control in App Designer, right click to
display the context menu, and select "Bring Control To Front". Recompile the application, and
redeploy to the PocketPC device.

Status: RESOLVED This problem has been resolved with the release of an updated
SatForms PocketPC runtime engine with SF Patch 70003. If you have applied Patch 70003 to
your system, or are using Satellite Forms 7.1 or higher, this problem is resolved.

Keywords: keyboard, input, pen, OnKey, GetLastKey

BugID: SF-00351

KB ID: 10063
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p39

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Deleting a record causes 'Error 30: Table won't open
or invalid' on PocketPC PDB
Problem: Deleting a record causes "Error 30: Table won't open or invalid" on PocketPC using
the PDB database format. The user can tap on the OK button in the error message prompt, and
continue using the application from that point.

This problem can occur under certain circumstances, including script code that writes a value to
a table other than the form's linked table just prior to the record beign deleted. What happens is
the form's current table record pointer can get "out of sync" when deleting a record, resulting in
the Error 30 message. The application can continue from that error, and the table and form can
be "re-synced".

Solution: This problem can be resolved by updating the Satellite Forms runtime engine for
PocketPC to a newer version.

Status: RESOLVED This problem has been resolved with the release of an updated
SatForms PocketPC runtime engine with SF Patch 70003. If you have applied Patch 70003 to
your system, or are using Satellite Forms 7.1 or higher, this problem is resolved.

Keywords: error, invalid, delete, record, pointer, PocketPC

BugID: SF-00347

KB ID: 10064
Updated: 2007-07-11

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p40

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Janam XP20/XP30 scanner powers off but needs to be
reset to turn back on
Problem: Janam XP20/XP30 barcode scanner device powers off but needs to be reset to turn
back on. This problem can occur after scanning items in a Satellite Forms application on the
Janam XP scanner, then powering off the device or allowing it to power off automatically. It will
not turn back on, thus you need to remove the battery door and reset the device, either by
pressing the reset button or by removing and reinserting the battery.

Solution: This problem is resolved by updating the ROM on the Janam XP device to the
latest version. The updated ROM from Janam solves this barcode scanner library problem, and
also corrects some other system issues. We recommend using the latest available ROM from
Janam, which you can download from the ParterZone section of the Janam website at
http://www.janam.com

Status: RESOLVED This problem is resolved with the release of updated Janam system
ROMs.

Keywords: Janam, XP20, XP30, scanner, ROM, power, freeze, lockup

BugID: SF-00346

KB ID: 10065
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.janam.com
http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p41

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Symbol MC50 scanner shows Error Enabling Scanner
Library after scanning for a while
Problem: Symbol MC50 scanner shows Error Enabling Scanner Library after scanning for a
while.

Solution: This problem is caused by a memory leak in the scanner/imager device driver in
the Symbol device ROM. It is not a Satellite Forms error. The problem can be resolved by
updating the MC50 ROM to a newer release that includes a fix for the device driver memory leak.
Download the updated MC50 ROM from the Motorola/Symbol website at http://www.symbol.com

Status: RESOLVED This problem is resolved with the release of updated Symbol system
ROMs.

Keywords: Symbol, MC50, scanner, imager, barcode, memory, library, error, PocketPC

BugID: SF-00344

KB ID: 10066
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.symbol.com
http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p42

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

PocketPC PDB problems filtering a record using a 10
digit numeric field
Problem: The Satellite Forms runtime engine for PocketPC using the PDB database format
has a problem filtering record using a 10 digit or wider numeric field as the filter criteria. When
using a large numeric field 10 digits or longer, the filter does not successfully select matching
records to display. This results in incorrect application function.

Solution: A possible workaround is to reduce the width of the numeric field to be 9 or fewer
digits wide (to avoid the problem), or to change the field type to a Character field instead of
numeric (which would allow the longer numeric values to be used as filter c riteria).

This problem is fully resolved in the updated Satellite Forms runtime engine for PocketPC
included in the Satellite Forms Patch 70002.

Status: RESOLVED This problem has been resolved with the release of an updated
SatForms PocketPC runtime engine with SF Patch 70002. If you have applied Patch 70002 to
your system, or are using Satellite Forms 7.1 or higher, this problem is resolved.

Keywords: filter, numeric, 10 digit, PDB, PocketPC, Patch 70002

BugID: SF-00339

KB ID: 10067
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p43

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Binarysearch function is not case sensitive on
PocketPC PDB
Problem: The Tables().Binarysearch function is not case sensitive on PocketPC using the
PDB database format, but it should be in order to be consistent with the PalmOS and PocketPC
CDB Binarysearch behaviour.

Solution: This problem is fully resolved in the updated Satellite Forms runtime engine for
PocketPC included in the Satellite Forms Patch 70002.

Status: RESOLVED This problem has been resolved with the release of an updated
SatForms PocketPC runtime engine with SF Patch 70002. If you have applied Patch 70002 to
your system, or are using Satellite Forms 7.1 or higher, this problem is resolved.

Keywords: binarysearch, binsearch, sort, case, sensitive, PocketPC, PDB

BugID: SF-00338

KB ID: 10068
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p44

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Binarysearch function returns incorrect row number
when no match on PocketPC PDB
Problem: The Tables().Binarysearch function returns an incorrect sort position row number
when the search value is not found on PocketPC using the PDB database format. It returns a
sort position row number (the location in the table where a match should be found based on the
sort order) that is 1 higher than it should be.

Solution: This problem is fully resolved in the updated Satellite Forms runtime engine for
PocketPC included in the Satellite Forms Patch 70002.

Status: RESOLVED This problem has been resolved with the release of an updated
SatForms PocketPC runtime engine with SF Patch 70002. If you have applied Patch 70002 to
your system, or are using Satellite Forms 7.1 or higher, this problem is resolved.

Keywords: binarysearch, sort, position, location, PocketPC, PDB

BugID: SF-00328

KB ID: 10069
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p45

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

PocketPC RemoveFilter function does not remove filter
on droplist table
Problem: PocketPC RemoveFilter function does not remove a filter on a droplist list table, if a
filter is changed on a form that is not linked to a table, and a droplist on that form uses the
filtered table as its list source. After removing the fileter, the droplist does not display updated
contents that reflect the active filter.

Solution: This problem is fully resolved in the updated Satellite Forms runtime engine for
PocketPC included in the Satellite Forms Patch 70002.

Status: RESOLVED This problem has been resolved with the release of an updated
SatForms PocketPC runtime engine with SF Patch 70002. If you have applied Patch 70002 to
your system, or are using Satellite Forms 7.1 or higher, this problem is resolved.

Keywords: filter, removefilter, PocketPC, droplist

BugID: SF-00334

KB ID: 10070
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p46

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

PocketPC project settings automatically change to
MDB desktop DB format when project is loaded
Problem: PocketPC project settings automatically change to MDB desktop DB format when a
project is loaded, regardless of what desktop database format the developer had selected when
the project was saved. PocketPC PDB applicatino targets allow either DBF or MDB desktop DB
formats in the Project Properties settings, but App Designer always changes the desktop DB
format to MDB when the project is loaded.

Solution: The cause of this unwanted behaviour is due to a minor error in the PocketPC
platform target definition files. The platform definition files are located in the \Satellite Forms
7\Platforms\ folder, with a .plt filename suffix. This problem can be corrected by manually
editing the platform definition files to correct the minor error, as follows. The example below
refers to the PocketPCPDB.plt platform definition file, but the same solution applies to all Windos
Mobile/PocketPC platform files.

1. Load the \Satellite Forms 7\Platforms\PocketPCPDB.plt file into a plain text editor, such as
Notepad.
2. Locate the following line:

SFDDB = DDBMDB.dll

and comment out this line by prefixing a semicolon before it like this:

;SFDDB = DDBMDB.dll

3. Restart App Designer, and reload your project, and it should now preserve the desired desktop
database format instead of always defaulting to MDB.

4. Repeat this edit process for all of the Windows Mobile/PocketPC platform definition files.

Status: RESOLVED This problem is resolved with the release of Satellite Forms 7.1, or
by manually editing the .plt files.

Keywords: MDB, DBF, project, properties, settings, desktop, database, PocketPC

BugID: SF-00327

KB ID: 10071
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p47

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Windows Vista Compatibility Issues
Problem: Satellite Forms has some compatibility issues with Microsoft Windows Vista and
Windows 7, outlined below.

A. Installation Issues

1. Administrator privileges are required to install Satellite Forms on Windows Vista.

2. When you install the Satellite Forms development package to a Windows Vista PC, then try to
run the Satellite Forms MobileApp Designer (either from the desktop icon or from the Start
menu or by launching an .sfa project file), an error message is displayed. The error message
states "AppDesigner: Unable to launch the application because a required file is missing. The
file "AppDsn.tlb" cannot be found. Please reinstall Satellite Forms."

To resolve this issue, right click on the Satellite Forms desktop icon, and select "Run as
administrator". A "program needs your permission to continue" dialog should appear,
MobileApp Designer should now start correctly. You can now close MobileApp Designer, and
should now be able to launch it normally from the desktop icon, or from the Start menu, or
by launching an .sfa file without using "Run as administrator".

3. If you install Satellite Forms into the Program Files folder, then try to compile one of the
sample projects which are located in the \Program Files\Satellite Forms 7\Samples\Projects
folder, you may be blocked from saving changes to the .sfa file. Vista may report that
"access is denied". You can avoid this issue by installing Satellite Forms to the root of the C:
drive instead of into Program Files, eg. C:\Satellite Forms 7. Disabling the Vista User Account
Control may also resolve this issue. Starting with Satellite Forms 7.2, the default installation
folder is changed from C:\Program Files\Satellite Forms 7 to C:\Satellite Forms 7 in order to
avoid this issue.

B. Operation Issues

1. Windows Vista may prompt you for permission when running the RDKInst utility. Prior to
Satellite Forms 7.2, it may also state that RDKInst.exe is an "unknown application". Starting
with Satellite Forms 7.2, the RDKInst tool and other Satellite Forms EXE files are now signed
with an autheticode certificate, so that the publisher is identified as Thacker Network
Technologies Inc., avoiding the "unknown application" warning.

2. Using the RDKInst utility to install prc/pdb files, or using the InstallPrcToPalmPilot function of
the SatForms Hotsync ActiveX control, or using the Hotsync user management functions of
the ActiveX control on Windows Vista (or on Windows XP with palm Desktop 6.2 and Hotsync
7.0.2) would usually fail, because Satellite Forms could not obtain the list of Hotsync users.

p48

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

The list of users shown by the RDKInst tool would be blank. This is resolved with Satellite
Forms 7.2.

Status: RESOLVED Many of these issue are resolved with the release of Satellite Forms
7.2, or by following the instructions above.

Keywords: Windows Vista, Hotsync, RDKInst, ActiveX, authenticode, administrator,
AppDsn.tlb

KB ID: 10083
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p49

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How-To Guides
How To use SatSync to send data to the Palm device
Problem: How To use SatSync to send data to the Palm device

Solution: SatSync is a sample application written in Visual Basic and provided in the
\Samples folder of your SatForms installation. SatSync demonstrates how to use the SatForms
HotSync control to send and receive data between the desktop PC and PalmOS handheld.

These instructions assume that you have created and compiled your application in App Designer,
and want to send data from an existing database table on the PC (with the same schema as the
table in App Designer) to the handheld. It is also possible to bring this data back into the table
editor in App Designer with an additional step. If your data already exists in the App Designer
table editor, there is no need to follow these steps, since you can just use the Handheld |
Download App & Tables function. These instructions are for sending data from an existing PC
database to your SatForms application on the handheld, and optionally bringing that data back
into the App Designer table editor.

1. Start the SatSync sample application in \Samples\SatSync.
2. Select File | New, then File | Configure Send List.
3. Select the DBF or MDB files to send data to the handheld.
4. Save your SatSync config file, then click on Send Tables.
5. Hotsync, and the data should get sent to the handheld, where it now
resides in the handheld tables.

[Optional step to bring data back into App Designer Table Editor]
6. In App Designer, select Handheld | Upload Tables and perform another
sync, bringing the data back into the table Editor.

Keywords: SatSync, PalmOS, table, DBF, MDB, database, HotSync

See Also: How To use SatSyncPPC to send data to the PocketPC device

KB ID: 10007
Updated: 2006-10-12

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p50

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To use different platform targets for PocketPC
applications
Problem: How To use different platform targets for PocketPC applications.

 Q: There are several PocketPC platform targets available in Satellite Forms 6.1,
including PocketPC 2002, pocketPC 2003, WinMobile 5, WinMobile5 Square, and WinCE.NET.
Which target(s) should I include in my application?

This article is updated December 3, 2007 with new recommendations due to
improvements in Satellite Forms 7.1. Older information is archived below for previous
versions of Satellite Forms.

Solution: In many cases, you need only include a single PocketPC target in your project to
create an application that will run on many different PocketPC target devices. This is the case
whether you are upgrading an application created with an earlier version of Satellite Forms, or
are creating a new application from scratch. The following guidelines apply:

1. Generally speaking, you can handle most PocketPC devices with a single PocketPC target.
This target will use the Palm DB (PDB) device database format by default. DO NOT change it to
use the obsolete Microsoft Pocket PC DB (CDB) database format.

You may use the PocketPC target for use on PocketPC 2002, PocketPC 2003, 2003SE, WinMobile
5, and WinMobile 6 Classic and Professional devices. You do not need to create separate targets
for all of those platforms. The device application and database files created for the PocketPC
target can be used on all of those devices.

2. Creating new applications

For new applications, you should use the PocketPC target. Most PocketPC target platforms are
really not different except for the name, and are kept solely to maintain compatibility with
projects written in an older version. There is no real difference between these targets, aside
from the name. There is no need to add more than one of these targets to your application,
since they are all compatible with each other.

3. WinMobile 5 Square target

The WinMobile 5 Square target is designed for the Windows Mobile devices that use a square
240x240 screen instead of the regular PPC 240x320 screen, like the Palm Windows Mobile Treo
700W/WX.

If you have a device that requires a different screen dimension (for example a device with a
320x320 square screen), contact Satellite Forms Support for help in building a specific target
support file for that device.

The older KB article information applicable to Satellite Forms 6.x is archived below.

1. Generally speaking, you can handle most PocketPC devices with a single PocketPC 2003
target.

http://www.satelliteforms.net/supportform.htm

p51

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

2. Supporting PocketPC 2002 devices

The only PocketPC devices that require a dedicated target are PocketPC 2002 devices. If you
want to support PocketPC 2002 devices with your application, you will need to build a separate
PocketPC 2002 target for your application. The device database (CDB) files for this target are
not compatible with the CDB files created for other PocketPC targets. If you do not need to
support PocketPC 2002 devices with your application, ignore this target altogether.

3. Upgrading an application created with an earlier version of Satellite Forms

You may continue to use the PocketPC2003 target for use on PocketPC 2003, 2003SE, WinMobile
5 and WinCE.NET devices. You do not need to create separate targets for all of those platforms.
The device application and database files created for the PocketPC 2003 target can be used on all
of those devices (but not on PocketPC 2002 devices).

4. Creating new applications

For new applications, you could consider using the PocketPC 2003 target or the WinMobile 5
target. They are really not different except for the name. WinMobile 5 targets will work on
PocketPC 2003 devices as well. The WinCE.NET target is also the same: it is included for
developers writing new WinCE.NET applications so they can select that target instead of asking
"why do I use the PPC 2003 target for WinCE.NET?". There is no real difference between these
targets, aside from the name. There is no need to add more than one of these targets to your
application, since they are all compatible with each other.

5. WinMobile 5 Square target

The WinMobile 5 Square target is designed for the forthcoming Palm Windows Mobile Treo, which
is expected to use a square 240x240 screen instead of the regular PPC 240x320 screen. If you
have a device that requires a different screen dimension (for example a WinCE.NET device with a
320x320 square screen), contact Satellite Forms Support for help in building a specific target
support file for that device.

Keywords: target, platform, PocketPC, 2002, 2003, WinMobile 5, WinCE.NET

KB ID: 10024
Updated: 2007-12-03

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/supportform.htm
http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p52

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To use Global Functions & Subs to replace
extension functions not available on the current target
platforms
Problem: How To use Global Functions & Subs to replace extension functions not available
on the current target platforms

Solution: You can have an application that uses an extension to perform a function on one
platform, but uses a global function or subroutine to perform the same function on another
platform where that same extension might not be available. You can use this method to prevent
the compiler from complaining that the function does not exist on the current target platform.

This is easily handled with Global Subs and Functions, specifically the Private (not Shared) global
funcs and subs. Simply create a function or subroutine matching the name and parameters of
the extension function which you do not have access to under that platform. The sub does not
have to do anything, though functions need to return a value.

This is very useful when porting apps between platforms. For example, here is a global sub to
handle the LockScreen and UnlockScreen
functions of the PalmDataPro SFScreenLock extension that is currently only available for PalmOS.
Place this code in your PocketPC target global functions and subroutines (Private) script section:

'global pseudo subroutines to replace extension calls
Sub LockScreen
 'do nothing on PocketPC
End Sub

Sub UnlockScreen
 'do nothing on PocketPC
End Sub

Now your existing PalmOS target code that uses the LockScreen/UnlockScreen functions can be
compiled for PocketPC without compiler errors.

You can also use this technique to work out differences between PalmOS and PocketPC
implementations of similar extensions, like the PalmOS Internet extension and the PocketPC
Winsock extension. While they share several common functions and design, they each have
different platform-specific network setup and teardown functions. As shown in the SatForms 6.1
cross platform SMTP and TCPIP Socket sample applications, we can use global functions to write
common network code that runs on either platform.

In the older PalmOS-only SMTP sample, this code was used to initialize the network using the
OpenNetLib extension function:

' open the network connection
Rec_data = "connecting..."
if (OpenNetLib() <> 0) then
 MsgBox("Error opening NetLib - " & GetLastError())
endif

In the new cross platform SMTP sample included with SatForms 6.1, this form level script is
changed to this:

' open the network connection
'calls a private (per target) global script OpenNetwork to open network taking into

p53

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

'account the different startup functions for PalmOS and PocketPC targets
Rec_data = "connecting..."
if (OpenNetWork() <> 0) then
 MsgBox("Error opening network - " & GetLastError())
endif

The above code is the same for the PalmOS and PocketPC targets.

Then, in the Global Funcs & Subs (Private) script for PalmOS, we have this
code:

'script function to open the network
'in the PalmOS implementation this calls OpenNetLib() extension function
Function OpenNetwork()
 OpenNetwork = OpenNetLib()
End Function

'in the PalmOS implementation this calls CloseNetLib() extension function
Function CloseNetwork(closemode)
 CloseNetwork = CloseNetLib(closemode)
End Function

In the Global Funcs & Subs (Private) script for the PocketPC target, we have
this code:

'script function to open the network
'in the PocketPC implementation this calls WSAStartup() extension function
Function OpenNetwork()
 OpenNetwork = WSAStartup()
End Function

'in the PocketPC implementation this calls WSACleanup() extension procedure
'the close mode is ignored
Function CloseNetwork(closemode)
 WSACleanup()
 CloseNetwork = 0 'always return 0 on PPC
End Function

That's it -- all of the rest of the SMTP sample network code is the same for both the PalmOS and
PPC targets, using the Internet and Winsock extensions.

Keywords: extension, target, platform, compiler, global, function, sub

KB ID: 10016
Updated: 2006-10-02

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p54

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Install the SatForms Runtime for PocketPC
Programmatically
Problem: How To Install the SatForms Runtime for PocketPC Programmatically

Updated for Version 8: With Satellite Forms 8 there is a new capability to use an
integrated runtime engine, which removes the need to install the runtime engine files
separately from the application files.

Updated: Starting with Satellite Forms 7.0, it is possible to bundle the PocketPC
runtime engine directly with your application files, instead of needing to install the
runtime engine separately. That is the new recommended approach, described in How
To Bundle the SatForms PocketPC runtime engine with your app. The information
below is retained for Satellite Forms 6.x users.

Solution: The installation of the SatForms Runtime for PocketPC can be automated using
the SatForms ActiveSync OCX. An example is given here for Visual Basic, thought the same
functions could be executed under any development language that employs ActiveX controls.
The necessary steps are:

1. Install the SF runtime cab file to the PPC device
2. Remotely launch the cab file to install the files on the PPC

1. Use FileSendToPPC function to send the right CAB file to a folder on the PPC, eg.
\MyAppInstall

Use the FileSendToPPC OCX function to send the CAB file to the PPC in the desired folder (may
need to use the CreateFolder function first if the folder does not exist). It is safe to send the
CAB to the default \My Documents folder if desired.

eg. SyncAx1.FileSendToPPC("SatFormsRuntimeRDK.Arm.CAB",
"\MyAppInstall\SatFormsRuntimeRDK.Arm.CAB")

2. Use the StartApp function in CeSync to invoke the CAB file to install. To do this you need to
start the wceload.exe utility on the PPC and pass it the name of the CAB file to install:

SyncAx1.StartApp("wceload.exe", "\MyAppInstall\SatFormsRuntimeRDK.Arm.CAB")

NOTE: If you install stuff to a path with spaces (eg. \My Documents\MyApp) then you will have
to deal with enclosing the commandline arg in quotes, which in VB ends up looking like this:

SyncAx1.StartApp("wceload.exe", """\My
Documents\MyApp\SatFormsRuntimeRDK.Arm.CAB""")

The SatForms Runtime installation should proceed without needing any user input. On PocketPC
2002/2003/2003SE the operating system will automatically delete the CAB file once it has been
installed, but on Windows Mobile 5.0 the CAB will not be deleted automatically by the system.

Keywords: PocketPC, runtime, install, CAB, wceload, StartApp, OCX, ActiveSync

KB ID: 10015
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online

http://www.satelliteforms.net/KB/

p55

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Satellite Forms Website Home

-o-

http://www.satelliteforms.net/

p56

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To make Satellite Forms 6.1 PocketPC
applications launch faster
Problem: How To make Satellite Forms 6.1 PocketPC applications launch faster

NOTE:This article applies to Satellite Forms PocketPC applications that use the CDB handheld
database format ONLY. The techniques herein do NOT apply to SatForms PocketPC application
using the PDB database format, which is highly recommended over the CDB format, for
numerous reasons. If you are using Satellite Forms 7.0 or higher, the best approach is to use
the PDB database format for your PocketPC applications.

Update for Version 8: Satellite Forms 8 no longer supports the CDB handheld database
format discussed in this article. This article does NOT apply to Satellite Forms 8.

Solution: The Satellite Forms runtime engine for PocketPC needs to have have an extra
record index column at the end of each table in the application. Previous versions of the
SatForms runtime engine automatically created this special record index column the first time an
application was launched on the handheld, which resulted in longer load times than subsequent
launches of the program. This additional load time was more noticeable with larger databases
(larger numbers of records). Starting with Satellite Forms 6.1, it is now possible to create this
record index right in the table editor in App Designer, resulting in a quicker initial launch of the
application.

With previous SatForms runtime engine versions, a numeric column named SYS_POSITION
was automatically added to the end of each table on the PocketPC when an application was
started for the first time. This SYS_POSITION table was needed by the runtime engine to
maintain proper sorting of the data on the handheld. The creation of this additional field and
filling it with correct record position data resulted in the application taking longer to load the first
time it was launched, and also affected the corresponding desktop database if one was used to
synchronize the data with the handheld, since it too would need this extra column. This would
lead to a problem if a cross platform PalmOS and PocketPC application wanted to sync to the
same desktop database tables, because this SYS_POSITION column would not exist in the
database created for the Palm target.

The SatForms App Designer would ignore this SYS_POSITION column when bringing data from
the handheld back into the table editor using the Upload Tables function.

With SatForms 6.1, the name of this special column has been changed to SYS_POSIDX, and it
is now possible to create this special record index column in the App Designer table editor, just
like any other column in your database. This change offers two benefits:

 The application will launch faster the first time on the handheld
 The desktop database can now be the same for both PalmOS and PocketPC targets in a cross

platform application

Adding the SYS_POSIDX column to your tables in App Designer is optional, but recommended
for applications with larger databases or cross platform applications that need to sync both
platforms to the same desktop database. If you do not add this column to a table, it will still be
automatically created by the runtime engine the first time that table is opened, as in previous
versions.

There are several requirements to follow in order to create the SYS_POSIDX column
properly:

 The SYS_POSIDX column must be the last column in your table(s).

p57

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

 You must use the SatForms 6.1.1 or higher runtime engine for PocketPC. This method will
NOT work with earlier versions.

 The SYS_POSIDX column must be a Numeric type, 8 digits, no decimals.
 The SYS_POSIDX column must be filled with correct index values for each record in the

table. The first record must have a value of 1, and each subsequent record must be
incremented by 1.

 The SYS_POSIDX column must not be accessed or modified by your handheld application in
any way. The runtime engine will maintain it automatically when records are
created/modified/deleted. Attempting to modify it's contents in the handheld application will
resulted in unpredictable application behaviour.

 The data in the SYS_POSIDX column in the desktop database, including in the App Designer
table editor, must be maintained by you to ensure that it contains the correct sequential
values.

 We recommend that if you create the SYS_POSIDX column in any of your tables, you should
consider creating the column in all of your tables, as the consistent table design will make
ongoing maintenance and future development easier.

If you take care to follow all of these requirements and add the SYS_POSIDX column to your
tables in App Designer, you will find a significant speed benefit the first time your application is
launched on the handheld. The larger your application (number of tables and number of
records), the more noticeable the speed improvement will be. Subsequent launches of the
application will be faster regardless of whether or not you include the SYS_POSIDX column in
your tables, since the runtime engine would have automatically created it in each table.

TIP: Using your desktop database application to maintain the SYS_POSIDX contents

You can create a macro in your desktop database application to fill the SYS_POSIDX field of each
record with the record number (RECNO), prior to sending it to the PocketPC handheld. This
ensures the SYS_POSIDX column is always prepared properly before being sent to the handheld.

Keywords: PocketPC, launch, speed, performance, database, index, data, SYS_POSITION,
SYS_POSIDX

KB ID: 10009
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p58

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To use color bitmaps in your application
Problem: How To use color bitmaps in your application

Solution: Color bitmaps are possible if you follow the required image naming convention
listed below.

Satellite Forms has supported color bitmaps since V4.1. Unfortunately the documentation for
this support has been difficult to come by. Here is the relevant information for using color
bitmaps in your SatForms application.

2.1 Color Support
==
==========

You can now embed color images into Satellite Forms applications. App
Designer can read standard Windows BMP files and convert them into
Palm bitmap resources.

To achieve great looking graphics on devices with different color
capabilities, you can provide multiple bit-depth versions of any
image. Satellite Forms runtime engine will use the image that is most
suitable for the device.

2.1.1 Specifying Multiple Bit-depth Images
--

- Create or open an existing form with App Designer
- Insert a Bitmap Control onto the form
- Double-click on the new bitmap control
- Browse or type the location of a black and white BMP file
- Close the control's property dialog box

Satellite Forms supports 5 bit depths: 1-bit, 2-bit, 4-bit, 8-bit and
16-bit. However, you must always supply a 1-bit (black and white)
version of the image. This will ensure that your application will
always look right on black and white Palm devices.

Once you have associated a black and white image with a bitmap
control, App Designer will use a predefined file naming convention to
locate the other versions of the image file.

App Designer will use the suffix "-2", "-4", "-8" and "-16" to locate
the color versions of the black and white image. The number
corresponds to the bit-depth of the file.

For example: if the bitmap control is associated with "Photo.bmp", App
Designer will look for "Photo-2.bmp", "Photo-4.bmp", etc.

You don't have to specify images for all bit-depths. Sometimes the
lower bit images are good enough. Higher bit images occupy a larger
memory footprint.

When building the project files, App Designer will use a dithering
algorithm to transform 2, 4, 8 and 16-bit images so that they will use
the correct Palm's color palettes, so your images may look different

p59

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

on the device. To avoid this transformation effect, you may want to
use a graphic editing tool to make sure that the images are already
using the correct Palm color palettes. For your reference, Satellite
Forms installs "PalmPalettes.bmp" in the Templates directory.

Bitmap images used by bitmap controls in a Satellite Forms project
will end up as resources in a new target file. This new file uses the
following naming convention: ExxxxMMnn#AppName.prc, where xxxx denotes
the creator ID of your application, MM and nn are major and minor
versions of your application.

You can use Microsoft Paint to create your images. You can usually
find this program in \Program Files\Accessories\.

Note: using Microsoft Paint, 1-bit BMP file must be saved as
Monochrome Bitmap and other BMP files must be saved as 24-bit Bitmap.

See the about box in any of Satellite Forms sample projects for
examples.

Note: There is a limit of 64K for each bitmap family (all bit depths
combined).

2.1.2 Using Bitmaps in Tables
--

- Create, import or open an existing table
- Add a new "BINARY" column
- Create or open an existing form
- Double-click the form
- Link the table to the form
- Close the form's property dialog
- Insert a Bitmap Control onto the form
- Double-click on the new bitmap control
- Change the "Image Source" from File to Table
- Choose the "BINARY" column
- Close the control's property dialog box

Satellite Forms' runtime engine will use the content of the current
record to render the image. Only binaries of type "Tbmp" (Palm bitmap)
are currently supported by Satellite Forms runtime engine. Future
third party extensions may support other binary types.

See the "Deliveries" sample project to see how this is done.

Note: A Palm record can only be 64K in size. This limitation directly
impacts the size of your binary fields.

2.1.3 Populating a BINARY column in a Table with a Palm bitmap family
--

A bitmap control can be linked to a binary column in a table.
Satellite Forms engine will then load the "Tbmp" (Palm bitmap) object
contained in the record and render it on the screen.

p60

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

For this process to work, you will need to fill in the linked-column
with the proper "Tbmp" objects in advance.

Satellite Forms 4.1 has a new feature that can assist in putting Palm
bitmaps into binary columns.

When Satellite Forms translates tables from desktop databases
(DBF/MDB) to Palm databases (PDB), it will automatically convert
embedded pathnames in the binary columns into binary objects.
Translation happens when App Designer builds your project or when
Satellite Forms conduit runs.

Pathnames must be embedded in binary columns using the following
formats:

 HSBM<full pathname>
 - or -
 HSRW<full pathname>

HSBM and HSRW denote the type of file that follows.
<full pathname> denotes the location of the file on your desktop PC.

If HSBM is specified, the pathname must point to a black and white BMP
file. Satellite Forms uses the file naming convention discussed in
section 2.1.1 to discover the color BMP files.

If HSRW is specified, the pathname can point to any file. During
translation, Satellite Forms will simply embed the content of the file
into the column without any modifications. Note: the current built-in
bitmap control can only recognize Palm bitmap. However, third
party extensions may use this same mechanism to move other data types
onto the device. E.g. you can embed MP3 files to be used by a future
MP3 extension.

Note: On Palm devices, a record is limited to 64K, so embedding large
files will fail.

Examples:
 HSBMC:\My Documents\Vacation\Photo.bmp
 HSRWC:\Music\Tune.mp3

See the "Deliveries" sample project to see how this is done.

The "Deliveries" sample also demonstrates how to embed pathnames using
scripts.

Note: When assembling a record, Satellite Forms makes sure that a
record will not exceed 64K in size. Satellite Forms will omit binary
contents that will cause the record to grow beyond 64K.

2.1.4 Populating a BINARY column in a Table with a Resource Locator
--

Satellite Forms can also render Palm bitmaps that already exist on
existing Palm databases.

p61

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

In this case, you need to embed a resource locator. A resource locator
uses the following format:

 SFRLRSRC:<PRC name>:Tbmp:<id>

where,
 <PRC name> is the name of the resource database (PRC)
 <id> is the resource ID of the Palm bitmap family

Example:
 SFRLRSRC:MyLogoResDb:Tbmp:1001

2.1.5 Using the App Designer Table Editor to Populate BINARY Columns
--

You can enter strings with the format specified in section 2.1.3 and
2.1.4 using the built-in table editor in App Designer. When the
project is built, App Designer will convert any valid entry to the
proper Palm bitmap family.

Note: App Designer will not embed bitmaps that would cause a record to
exceed 64K.

Warning: Using "Upload Tables..." feature in App Designer will clear
the contents of these binary columns. You will need to reenter the
strings again. You could consider adding a CHAR column to your
table to save the pathname strings, in addition to entering them into
the BINARY column, thus making it easier to repopulate the contents
of the BINARY column if you use the Upload Tables function, by copying
and pasting the pathname strings from the CHAR column to the BINARY
column in the table editor.

Keywords: bitmap, color, image, graphic, logo

KB ID: 10010
Updated: 2005-11-17

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p62

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To use SatSyncPPC to send data to the PocketPC
device
Problem: How To use SatSyncPPC to send data to the PocketPC device

Solution: SatSyncPPC is a sample application written in Visual Basic and provided in the
\Samples folder of your SatForms installation. SatSync demonstrates how to use the SatForms
ActiveSync control to send and receive data between the desktop PC and PocketPC handheld.

These instructions assume that you have created and compiled your application in App Designer,
and want to send data from an existing database table on the PC (with the same schema as the
table in App Designer) to the handheld. It is also possible to bring this data back into the table
editor in App Designer with an additional step. If your data already exists in the App Designer
table editor, there is no need to follow these steps, since you can just use the Handheld |
Download App & Tables function. These instructions are for sending data from an existing PC
database to your SatForms application on the handheld, and optionally bringing that data back
into the App Designer table editor.

1. Start the SatSyncPPC sample application in \Samples\SatSyncPPC.

2. Select File | New, then File | Configure Send List.

3. Select the DBF or MDB files to send data to the handheld. These are your existing data
tables, not the tables generated by App Designer when it builds your project. Enter the folder on
the handheld where you wish to store the tables (eg. \My Documents\Work Order).

4. Save your SatSyncPPC config file, then click the Download Tables checkbox.

5. Attach your PocketPC device, and the data should get sent to the handheld, where it now
resides in the handheld tables.

[Optional step to bring data back into App Designer Table Editor]
6. In App Designer, select Handheld | Upload Tables, bringing the data back into the table Editor.

Keywords: SatSync, SatSyncPPC, PocketPC, table, DBF, MDB, database, ActiveSync

See Also: How To use SatSync to send data to the Palm device

KB ID: 10008
Updated: 2006-10-12

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p63

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To use the Ink View OCX to display uploaded
signatures on the PC
Problem: How To use the SatForms Ink View OCX to display uploaded signatures on the
desktop PC

Solution: There is an ActiveX control included with Satellite Forms that is used to display
the ink images captured in your handheld application on your desktop PC. This control is called
the Ink View ActiveX Control (OCX), and is designed to display ink contents (such as signatures)
captured on either PalmOS or PocketPC handhelds, and uploaded back to the desktop.

The instructions for using this control were omitted from earlier Satellite Forms documentation.

Below is a step-by-step instruction on how to insert and set up the Satellite Forms Ink View
ActiveX control. The example used here is using the Access 2000 "Deliveries" sample found in
the Satellite Forms directory under "Projects\Sample Projects\Deliveries\Access 2000\Access".
Although this example uses Access 2000(R) the steps taken here are applicable to almost any
ActiveX form.

Step 1 - Open the desired form in the "Design" mode and decide where the Ink View control
should be located.

p64

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Step 2 - Go to "Insert" and select "ActiveX Control".

p65

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Step 3 - Select "SatForms Ink View Control" in the "Insert ActiveX Control" dialog box.

p66

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Step 4 - The Ink View Control will now appear as a white box on the form. The entered ink
control data will be displayed in this box exactly as it appears while in the Satellite Forms Ink
Control. Move this box to the appropriate space designated by the title bar.

p67

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Step 5 - Resize the control to the desired width and height. Then right-click on the control and
select "Properties".

p68

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Step 6 - Once the "Properties" window is up select the "Data" tab. Clicking on "Control
Source....." will bring up a list of columns in the table linked to this form. Select the column that
contains the Ink Control data that needs to be displayed.

p69

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Step 7 - Select any "Special Effects" or border styles under the "Format" tab.

p70

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Step 8 - Select the "Other" tab and name this control. The name does not matter so name it
anything you want. We'll rename it to SignatureField in this example.

p71

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Step 9 - That's it. You're done. View the finished form. Your form is now integrated with the
Satellite Forms Ink View control.

p72

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Keywords: ink, signature, bitmap, image, display, inkview, activex, ocx

KB ID: 10014
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p73

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Install SatForms PocketPC Runtime to
multiple handhelds
Problem: How To Install SatForms PocketPC Runtime to multiple handhelds

Updated for Version 8: With Satellite Forms 8 there is a new capability to use an
integrated runtime engine, which removes the need to install the runtime engine files
separately from the application files.

Updated: Starting with Satellite Forms 7.0, it is possible to bundle the PocketPC
runtime engine directly with your application files, instead of needing to install the
runtime engine separately. That is the new recommended approach, described in How
To Bundle the SatForms PocketPC runtime engine with your app. The information
below is retained for Satellite Forms 6.x users.

Solution: You can install the SatForms PocketPC runtime to multiple handhelds on a single
PC using different methods.

1. Method 1 - SatForms Runtime Installer

To install the runtime on multiple handhelds connected to the same PC, you can simply run the
RDK or SDK runtime installer when each handheld is attached to the PC and connec ted via
ActiveSync. Use the installer shortcuts from the Satellite Forms menu, for example Start |
Programs | Satellite Forms 6.1 | Runtime | PocketPC | RDK Runtime Installer.

Follow the onscreen prompts to complete the installation.

p74

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

2. Method 2 - ActiveSync Add/Remove Programs

Another method is to use the Add/Remove programs option in Microsoft ActiveSync. Attached
the PocketPC handheld to the PC, and wait for ActiveSync to make the connection. It does not
matter if you have a sync relationship with this handheld, or use a guest connection.

Select Add/Remove Programs from the Tools menu in the ActiveSync window.

p75

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

ActiveSync will query the handheld and see what is installed. If the SatForms runtime is already
installed on that device, it will be listed with a checkmark in the checkbox to the left of the
name.

If it is not installed, the checkbox will be blank. Check the checkbox, and then tap on OK.

p76

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Follow any additional prompts to complete the installation.

3. Method 3 - Use the functions of the SatForms ActiveSync OCX to install via the
runtime CAB file

See this KB article: How To Install the SatForms Runtime for PocketPC Programmatically

Keywords: Runtime, install, multiple, ActiveSync, PocketPC

KB ID: 10020
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p77

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Install the SatForms Runtime for Palm silently
Problem: How To Install the SatForms Runtime for Palm silently

Updated: Starting with Satellite Forms 7.1, the "Satellite Forms Runtime for Palm" has
been renamed to "Satellite Forms Runtime for PCs", as that more accurately reflects
what the runtime components are for, and applies to both Palm OS and PocketPC
applications. See the Satellite Forms 7.1 manual for the updated runtime installation
instructions. The information below is retained for Satellite Forms 6.x/7.0 users.

 Q: Is there a way to hide or bypass the Satellite Forms logo from the Palm
installer - or - is there a way to install and register these files without any user intervention?

Solution: Yes, there are several ways to install the SatForms Runtime for Palm to the
desktop PC with reduced or no user interface:

1. Performing a silent installation using the Runtime Installer package:

(a) Launch the Setup.exe file with switches telling it to complete the installation with no user
intervention at all:

setup.exe /s /v/qn

or

(b) Simply bypass the Satellite Forms logo but present the rest of the setup UI:

setup.exe /s

2. If you can assure that your target PC already has the required Microsoft Installer executable
files installed, you can install directly from the .msi file instead of the setup package. You only
need to work with the .msi file, and do not need any of the other files in the "Disk" folder.

msiexec.exe /q /i "Satellite Forms Runtime for Palm.msi"

or

"Satellite Forms Runtime for Palm.msi" /q

3. Utilize the redistribution kit merge module in your own installer package. Simply add the
SatFormsRedist.msm merge module to your installer project. It will install and register all of the
files without any UI.

4. Install and register the necessary files yourself using the instructions provided in the
SatForms 6.1 help file in the "Deploying your Application | Creating a custom installer | File
placement and registration" topic.

Keywords: Install, silent, runtime, palm, msi, setup

KB ID: 10021
Updated: 2007-12-03

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p78

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

-o-

p79

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To use the SatForms ActiveSync control with
Delphi
Problem: How To use the SatForms ActiveSync control with Delphi

Solution: Delphi 6-7 Step by Step

1. Select Menu tools/env. options

2. Select Type Library Tab and check "Can Create" Option

Click OK

p80

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

3. Select Menu Component - Import Activex Control

Click Install

The activex will be Installed and will be available at the Selected Component palette location
(here ActiveX)

p81

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Now be sure that Microsoft Active Sync is active
Open your form
Add the activex (TSFAxPPC61)

For The activex to be created you must Use it at least once (or the events will not fire)

Click the events
OnCreate
Create an Event Procedure (here OnCreate)

Add the Code:

procedure TForm1.OnCreate(Sender: TObject);
var
S: string;
begin
S:=SFAxPPC611.OleObject.LastErrorText;;
end;

Watch the Oleobject part of the string. This must be used when referring the functions and
procedures in the SFAxPPC611 object. There is a slight difference in using this object in opposite
to normal Delphi objects because you must reference the Oleobject as part of the object calls.

This is all. You can use it and the events will fire.

In previous Delphi versions:
Use File|Open, set the filter to Type Library files, open the SFrmAxPPC61.ocx in the
windows\system32 directory , and have a look at the CanCreate flag in the type library editor.
Set it to true, save the typelibrary as SatelliteFormsActiveSync_TLB.TLB , and try importing that.

This article was contributed by Jorn Johanneson, based on a similar HowTo from
PDA-TECH on their TopSync OCX.

p82

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

http://www.apimo.dk/

Keywords: Delphi, ActiveSync, PocketPC

KB ID: 10025
Updated: 2008-05-16

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.apimo.dk/
http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p83

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Create an Installer for your SatForms 6.x
PocketPC Application
Problem: How To Create an Installer for your SatForms 6.x PocketPC Application

Solution: There are several different approaches to creating an installer for your SatForms
PocketPC application. This article presents an approach that generates a single exe file to install
the Satellite Forms runtime engine and your compiled application to the PocketPC, providing a
smooth user experience.

[NOTE: This article is applicable to Satellite Forms 6.x PocketPC applications, and to
SatForms 7 applications that use the CDB database format. A new and improved
installer creation method is described for Satellite Forms 7.x and 8.x PocketPC
applications in the article How To Create an Installer for your SatForms 7 PocketPC
Application]

This example describes all steps needed to create an installer for the PocketPC application "Work
Order Sample.exe", based on the SF sample application "Work Order". Directories and
program names can be modified to suit your own application by changing the
references in the *.bat, *.inf, *.ini, and *.txt files described below. The process described
herein will enable you to create a single-EXE installer file for your SatForms PocketPC
application. NOTE: You will need to repeat this process with your PPC2002 and PPC2003 target
builds, resulting in separate EXE installers for each. See the article How To use different
platform targets for PocketPC applications for more information about PocketPC targets.

The overall approach is to create a PocketPC CAB file for your application, then combine the
SatForms runtime engine CAB and your app CAB into a single EXE installer.

NOTE: Do not let the length of this article dissuade you from using this installer creation process.
This article is quite long so as to ensure no steps are left out, but you will find it is a
straightforward process to create you own app installers using this method, and the professional
looking results are worth the investment of your time.

This installer creation method utilizes a free open source installer creation tool called Nullsoft
Scriptable Install System (NSIS). NSIS is similar in function to other installer creation tools such
as InstallShield, Wise Installer, and InnoSetup, but is completely free of charge for personal and
commercial use.

Please download the WorkOrderInstallerSample.zip file here:
http://www.satelliteforms.net/support/WorkOrderInstallerSample.zip

A. What does the installer do?

It implements a complete install program for the your PocketPC application. The install program
"WorkOrderInstall.exe" in this example does the following (note that the PPC must be connected
to the desktop and ActiveSync must be running):
1. Displays a license agreement (EULA) which the user must accept to proceed (you supply the
text).
2. Installs the Satellite Forms runtime engine.
3. Installs the application "Work Order Sample.exe" and all *.cdb files into the "\Program
Files\Work Order" folder on the PPC.
4. Creates a shortcut for the program in "\Windows\Start Menu\Programs" on the PPC.
5. Registers the program and creates an "Unload" file on the PPC for future deletion of the

http://www.satelliteforms.net/support/WorkOrderInstallerSample.zip

p84

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

application.

B. Files required to create the installer

1. Microsoft CABWiz files:
Cabwiz.exe, cabwiz.ddf, Makecab.exe

All of these files are available free of charge from Microsoft, in the Microsoft PocketPC 2002 SDK
zip file. We have included them in the \Utils folder in the sample zip file.

2. Application files: Work Order Sample.exe (icon/executable for PPC), Work Order Sample.pda,
all *.cdb files in the AppPkg folder (wrkLookup.cdb, wrkSites.cdb, wrkWorkItems.cdb). These
are included in the sample zip file in the \WorkOrder folder, but you could also create them by
compiling the PPC2003 target of the Work order sample project included with Satellite Forms.

3. Batch and configuration files for Cabwiz:
MakeCAB-WorkOrder.bat, WorkOrder.inf

4. Readme, EULA, installer icon files:
readme.txt, eula.txt, WorkOrderInstall.ico

Use these sample files as a template, and modify as needed for your application.

5. Satellite Forms Runtime Engine CAB file:

The Satellite Forms V6.1 RDK runtime engine installer CAB is provided in the \Satellite Forms
6.1\Redist\PocketPC\Runtime CABs\ folder:
SatFormsRuntimeRDK.Arm.CAB

6. Nullsoft Scriptable Install System:

Download the open source NSIS installer creation tool from http://nsis.sourceforge.net and
install it to your development PC. Accept all of the default installation options.

C. Step By Step Process

C.1. Unzip the WorkOrderInstallerSample.zip to a folder on your desktop PC, for example
C:\WorkOrderInstaller, (and make sure you allow the unzip process to create the subfolders
within the archive).

C.2. Create the CAB files containing your app

Run the MakeCAB-WorkOrder.bat batch command. This will create a
WorkOrderSample.Arm.cab file and other intermediate files in the C:\WorkOrderInstaller folder.
[Note that this CAB file is also included in the sample zip file, so it will already exist in your
folder.]

Note: you will likely get the error log file makecab.err created when you perform this step. It
might look something like this:

Warning: Section [DefaultInstall] key "AddReg" - there are no section entries to process
Warning: Section [DestinationDirs] key "Shortcuts" is not using the string "%InstallDir%"
Warning: Section [DefaultInstall] key "AddReg" - there are no section entries to process

http://nsis.sourceforge.net

p85

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Those warnings are harmless. If you see other warning or error messages, then you will need to
follow them up to resolve the problem.

C.3. Copy the SatForms RDK runtime engine CAB file from \Satellite Forms
6.1\Redist\PocketPC\Runtime CABs\ to the C:\WorkOrderInstaller folder.

C.4. Use NSIS to convert the CAB files to a single EXE installer

Right-click on the WorkOrderInstall.nsi file and select Compile NSIS Script. This will launch
the graphical interface for NSIS and compile the CAB files into a single WorkOrderInstall.exe file.
NSIS uses the configuration parameters in the WorkorderInstall.nsi file to define how it creates
the installer.

That's it! The installer is created, and NSIS displays the creation details. You can test the newly
created installer by clicking on the Test Installer button. [You need to have your PocketPC device
connected to the PC at this point.] Follow the onscreen prompts on the PC and the handheld as
needed.

p86

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

p87

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

That's it: the SatForms runtime engine and your application are installed!

To start the Work Order app on your PPC, tap on Start | Programs | Work Order

D. Modifying the sample to suit your application

In order to modify the sample installer files to suit your application, several files must be edited.

D.1. CAB creation INF file for your app

Make a copy of the WorkOrder.inf file and rename it to YourApp.inf. The name you choose for

p88

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

the INF file will determine the resulting CAB filename (eg. YourApp.Arm.CAB).

Edit the YourApp.inf file in a text editor to change references to Work Order and SampleCo to
your app and company, and to change the files included in the application to your app files. The
WorkOrder.inf file is marked up with the changes below. The sample entry is highlighted in grey,
with the modified value highlighted in yellow. Notes are highlighted in blue:

--

[Version]
Signature="$Windows NT$"
CESignature="$Windows CE$"
Provider=%CompanyName%

[CEDevice]
BuildMax=0xE0000000
;this ensures that you do not get the "this app may not run on this version of windows Mobile"
warning

[SourceDisksNames]
1=,"Application Files",, .\WorkOrder
1=,"Application Files",, .\YourApp
 NOTE: This is the subfolder you must create. You need to copy your app EXE, PDA, and
CDB files there from the AppPkg folder.

[DefaultInstall]
CopyFiles=Files.App
CEShortcuts=Shortcuts

[Shortcuts]
%AppName%,0,"Work Order Sample.exe"
%AppName%,0,"Your App.exe"

[CEStrings]
InstallDir=%CE1%\%AppName%
AppName="Work Order"
AppName="Your App"

[Strings]
CompanyName="SampleCo"
CompanyName="Your Company"
LinkFileName="Work Order"
LinkFileName="Your App"

[DestinationDirs]
Shortcuts =,%CE11% ; create shortcut in \Windows\Start Menu\Programs
Files.App = 0,%InstallDir% ; install app to %CE1%\%AppName% = \Program Files\Work
Order

[SourceDisksFiles]
Work Order Sample.PDA = 1
Work Order Sample.exe = 1
wrkLookup.cdb = 1
wrkSites.cdb = 1
wrkWorkItems.cdb = 1

p89

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Your App.PDA = 1
Your App.exe = 1
YAtable1.cdb = 1
YAtable2.cdb = 1
YAtable3.cdb = 1
;note add your extension SFX files here too

[Files.App]
Work Order Sample.PDA
Work Order Sample.exe
wrkLookup.cdb
wrkSites.cdb
wrkWorkItems.cdb
Your App.PDA
Your App.exe
YAtable1.cdb
YAtable2.cdb
YAtable3.cdb
;note add your extension SFX files here too

--

D.2. MakeCAB batch command

Copy the MakeCAB-WorkOrder.bat file and rename it to MakeCAB-YourApp.bat. Edit the .bat file
in a text editor and change the commandline from:

".\Utils\Cabwiz.exe" ".\WorkOrder.inf" /err makecab.err /cpu "Arm"
to
".\Utils\Cabwiz.exe" ".\YourApp.inf" /err makecab.err /cpu "Arm"

D.3. License and readme files

Edit the eula.txt and readme.txt files to your liking.

D.4. INI file

Copy the WorkOrder.ini file to YourApp.ini. Edit the YourApp.ini file in a text editor to change
references to Work Order and SampleCo to your app and company. The WorkOrder.ini file is
marked up with the changes below. The sample entry is highlighted in grey, with the modified
value highlighted in yellow. Notes are highlighted in blue:

--

[CEAppManager]
Version = 1.0
Component = WorkOrder
Component = YourApp

[WorkOrder]
Description = Work Order application
Uninstall = WorkOrder
CabFiles = WorkOrder.ARM.cab
[YourApp]

p90

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Description = Your Application
Uninstall = YourApp
CabFiles = YourApp.ARM.cab

--

D.4. NSIS install script

Copy the WorkOrderInstall.nsi file and rename it to YourApp.nsi. Edit the YourApp.nsi file in a
text editor to change references to Work Order and SampleCo to your app and company, and to
change the files included in the application to your app files. The WorkOrder.inf file is marked up
with the changes below. The sample entry is highlighted in grey, with the modified value
highlighted in yellow. Notes are highlighted in blue:

; NOTE: this .NSI script is designed for NSIS v1.8+
;
; This is a setup script that installs both the SatForms runtime engine and the compiled
application
; together as a single listed application using two CAB files (RDK runtime CAB plus your app
CAB)
; Both the SatForms runtime and your app will be listed in the Remove Programs tool and both
; must be accepted during the install process
; Note that all files are also installed to the PC hard drive in the INSTDIR folder

Name "SampleCo Work Order"
Icon "WorkOrderInstall.ico" ;note this is not the same icon as the Work.ico used by SatForms
OutFile "WorkOrderInstall.exe"
Name "YourCompany Your App"
Icon "YourAppInstall.ico" ;note this is not the same icon as the YourApp.ico used by SatForms
OutFile "YourAppInstall.exe"

; Some default compiler settings (uncomment and change at will):
; SetCompress auto ; (can be off or force)
; SetDatablockOptimize on ; (can be off)
; CRCCheck on ; (can be off)
; AutoCloseWindow false ; (can be true for the window go away automatically at end)
; ShowInstDetails hide ; (can be show to have them shown, or nevershow to disable)
; SetDateSave off ; (can be on to have files restored to their orginal date)

; BrandingText " " ;hides the "NullSoft Install System" text if desired

LicenseText "You must agree to this license before installing."
LicenseData "eula.txt"
; Note: if you do not want to display a license dialog first just comment out the above two lines

; Note: this is the path on the PC (not the PDA) where the files will be installed
; The PDA install location is defined in the CAB file itself
InstallDir "$PROGRAMFILES\Work Order"
InstallDirRegKey HKEY_LOCAL_MACHINE "SOFTWARE\SampleCo\Work Order" ""
InstallDir "$PROGRAMFILES\Your App"
InstallDirRegKey HKEY_LOCAL_MACHINE "SOFTWARE\YourCompany\Your App" ""

ComponentText "NOTE: The first component installed is the Satellite Forms Runtime, and the
second component is the Work Order application. You must install both components." ""
"Application:"

p91

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

ComponentText "NOTE: The first component installed is the Satellite Forms Runtime, and the
second component is the YourApp application. You must install both components." ""
"Application:"

Section "SampleCo Work Order" ; (default, required section)
Section "YourCompany Your App" ; (default, required section)
SetOutPath "$INSTDIR"

File eula.txt
File readme.txt

File WorkOrder.ini
File WorkOrder.Arm.CAB
File YourApp.ini
File YourApp.Arm.CAB

File SatFormsRuntimeRDK.ini
File SatFormsRuntimeRDK.Arm.CAB

; one-time initialization needed for InstallCAB subroutine
ReadRegStr $0 HKEY_LOCAL_MACHINE "software\Microsoft\Windows\CurrentVersion\App
Paths\CEAppMgr.exe" ""
IfErrors Error
Goto End
Error:
MessageBox MB_OK|MB_ICONEXCLAMATION \
"Unable to find Application Manager for PocketPC applications. \
Please install ActiveSync and reinstall this application."
End:

StrCpy $1 "$INSTDIR\WorkOrder.ini"
StrCpy $1 "$INSTDIR\YourApp.ini"
StrCpy $2 "$INSTDIR\SatFormsRuntimeRDK.ini"
Call InstallCAB

SectionEnd ; end of default section

Section "-post" ; (post install section, happens last after any optional sections) ; add any
commands that need to happen after any optional sections here
WriteRegStr HKEY_LOCAL_MACHINE "SOFTWARE\SampleCo\Work Order" "" "$INSTDIR"
WriteRegStr HKEY_LOCAL_MACHINE
"Software\Microsoft\Windows\CurrentVersion\Uninstall\SampleCo Work Order" "DisplayName"
"SampleCo Work Order (remove only)"
WriteRegStr HKEY_LOCAL_MACHINE
"Software\Microsoft\Windows\CurrentVersion\Uninstall\SampleCo Work Order" "UninstallString"
WriteRegStr HKEY_LOCAL_MACHINE "SOFTWARE\YourCompany\Your App" "" "$INSTDIR"
WriteRegStr HKEY_LOCAL_MACHINE
"Software\Microsoft\Windows\CurrentVersion\Uninstall\YourCompany Your App" "DisplayName"
"YourCompany Your App (remove only)"
WriteRegStr HKEY_LOCAL_MACHINE
"Software\Microsoft\Windows\CurrentVersion\Uninstall\YourCompany Your App"
"UninstallString" '"$INSTDIR\uninst.exe"'

; write out uninstaller
WriteUninstaller "$INSTDIR\uninst.exe"

p92

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

MessageBox MB_YESNO|MB_ICONQUESTION \
 "Setup has completed. View readme file now?" \
 IDNO NoReadme

 ExecShell open '$INSTDIR\readme.txt'

 NoReadme:

 Quit
SectionEnd ; end of -post section

ShowInstDetails nevershow ;never show installation details

; begin uninstall settings/section
UninstallText "This will uninstall SampleCo Work Order from your system"
UninstallText "This will uninstall YourCompany Your App from your system"

Section Uninstall
; add delete commands to delete whatever files/registry keys/etc you installed here.
Delete "$INSTDIR\uninst.exe"
Delete "$INSTDIR\eula.txt"
Delete "$INSTDIR\readme.txt"
Delete "$INSTDIR\SatFormsRuntimeRDK.ini"
Delete "$INSTDIR\SatFormsRuntimeRDK.Arm.CAB"
Delete "$INSTDIR\WorkOrder.ini"
Delete "$INSTDIR\WorkOrder.Arm.CAB"
Delete "$INSTDIR\YourApp.ini"
Delete "$INSTDIR\YourApp.Arm.CAB"
DeleteRegKey HKEY_LOCAL_MACHINE "SOFTWARE\SampleCo\Work Order"
DeleteRegKey HKEY_LOCAL_MACHINE
"SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\SampleCo Work Order"
DeleteRegKey HKEY_LOCAL_MACHINE "SOFTWARE\YourCompany\Your App"
DeleteRegKey HKEY_LOCAL_MACHINE
"SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\YourCompany Your App"
RMDir "$INSTDIR"
SectionEnd ; end of uninstall section

; Installs a PocketPC cab-application
; The var $0 contains the path to the CeAppMgr tool
; It expects $1 and $2 to contain the absolute location of the ini files
; to be installed.
Function InstallCAB

 ExecWait '"$0" "$1" "$2"'

FunctionEnd

; eof

--

Note that there are other options that can be adjusted in the NSIS script if desired -- see the
NSIS documentation for details.

p93

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

That is it, you do not need to modify any other files in order to customize the installer sample to
suit your application. Once you have made the changes, repeat the step by step process (C.1.
through C.4.) to create your own single-exe application installer.

Keywords: PocketPC, install, installer, NSIS, CAB, CABWiz, setup

KB ID: 10027
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p94

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To support multiple languages using build
targets
Problem: How To support multiple languages using build targets

Solution: Using multiple Build Targets in your application project enables easier support of
multiple language versions of your application

At the present time Satellite Forms does not offer special features to support localization of an
application into different languages. However, you can add additional targets to your application
in the same platform (eg. multiple Palm targets), so you could have an English target, French
target, etc. You would need to modify the UI of your application to the different languages in
each target, but you could keep that in a single project file with common code, rather than
multiple projects. It would probably be easier to maintain that multi-target project than it would
be to maintain multiple projects each with a single target.

You can set different control properties on a per-target basis, including the text of the control.
Go to the French target, and display the form, click on the button to select it. In the control
property space, uncheck that checkbox to the left of the Text property.

Then, change the text to suit that target. Switch to the other target, and change the text as
needed. That checkbox column indicates whether that control property is shared (checked) by

p95

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

all targets, or private (unchecked) for that target only.

Note also that you can have both shared and private global functions and subs, with the private
ones existing in the current target only. So, you can have different scripts with the same
function names between targets, which could for example do some target-specific things relating
to the different languages.

The SF runtime engine itself does use string resources for error messages that you could modify
with an external localization tool (RsrcEdit for example), and you could do the same with the
standard menu contents as well. This would mean you would have language-specific versions of
the runtime engine.

Keywords: localization, internationalization, language, targets

KB ID: 10028
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p96

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Change a control color using SFControlMagic
Problem: How To Change a control color using SFControlMagic

Solution: It is possible to change the color of a single control on a form using the
PalmDatapro SFControlMagic extension (http://www.palmdatapro.com/itm00090.htm).

Updated for Version 8: With Satellite Forms 8 there is a new Colorizer extension that
enables you to add color to forms and controls.

The PalmOS color UI system is based on working with groups of common form elements (such as
controls) together at the same time, rather than on individual color support for each control.
Since the PalmOS color system is designed this way, that is the way the the SFControlMagic
extension works. If you set the UI colors and then repaint the screen, all of the form elements
are changed.

However, it is possible to change the color of a single control in this manner:

'temporarily change the color of one control
'the color will automatically be reset back to the "normal" color
'when the control is tapped (though you may be able to handle
'that with the OnClick script of a button or OnPenDown/OnPenUp
'events for other control types by applying the color change again)

'let's change the btnPDPTheme button background color to the index value
'in the edCI control (use PickcolorIndex to select a color value)
'in the SFControlMagic sample application
dim oldColor
oldColor = GetColorIndex(1)
SetColorIndex(1, edCI)
btnPDPTheme.visible = true 'redraw it
SetColorIndex(1, oldColor)

Keywords: color, control, SFControlMagic, PalmDataPro

KB ID: 10031
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.palmdatapro.com/itm00090.htm
http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p97

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To use the PocketPC Emulator with Satellite
Forms
Problem: How To use the PocketPC Emulator with Satellite Forms

Solution: Microsoft provides a standalone PocketPC 2003SE Emulator that allows you to
develop and test PocketPC applications on your PC without having an actual PocketPC device
attached. It is similar in function to the PalmOS Emulator, but emulates a PocketPC 2003SE
device. Syncing between the emulator and your PC with ActiveSync is supported.

NOTE: This article used to be based on the Microsoft PocketPC 2003SE Emulator, but that
emulator is no longer available from Microsoft. This article has been updated to reflect the
current Windows Mobile 5 PocketPC emulator available from Microsoft, here:

http://www.microsoft.com/downloads/details.aspx?FamilyID=c62d54a5-183a-4a1e-a7e2-cc500e
d1f19a&DisplayLang=en

Using the PocketPC emulator gives you the ability to:
 compile PocketPC CDB applications in Satellite Forms without having a PPC device attached
 test your PocketPC application without having a real device
 improve your development testing productivity even when you have a real device
 demonstrate your application to many people at once via a PC or laptop

These instructions explain how to get the PocketPC emulator set up for use with Satellite Forms.

Download the PocketPC emulator (Standalone Device Emulator 1.0 with Windows Mobile OS
Images) from the above URL. There are two files to download, V1Emulator.zip (867 KB) and
efp.msi (57 MB !!). Next, download the "Virtual Machine Network Driver for Microsoft Device
Emulator" from the URL:

http://www.microsoft.com/downloads/details.aspx?familyid=DC8332D6-565F-4A57-BE8C-1D47
18D3AF65&displaylang=en

1. Unzip the V1Emulator.zip file and then run the standalone_emulator_V1.exe installer. Accept
all default prompts to complete the installation. This part is simple, and there are no new Start
menu entries or desktop icons when the install is done.

2. Launch the netvswrap.msi installer (the virtual machine network driver), and accept all install
defaults. Again, there are no new Start menu entries or desktop icons when the install is done.

3. Double click the efp.msi installer (Windows Mobile 5 OS images), and accept the default install
prompts. When this install is completed, there will be a new Start menu program folder
"Microsoft Windows Mobile 5.0 MSFP Emulator Images" with several PocketPC emulator image
choices.

4. Start | Programs | Microsoft Windows Mobile 5.0 MSFP Emulator Images | PocketPC Coldboot.

That fires up the emulator, which takes a little while from a cold boot.

You may see an error message "Failed to open the VPC Network Driver...". Just dismiss that by
clicking on OK. The emulated PocketPC will continue to boot. Once it is fully booted up, go
through the setup screens.

5. Start ... | Device Emulator Manager

http://www.microsoft.com/downloads/details.aspx?FamilyID=c62d54a5-183a-4a1e-a7e2-cc500ed1f19a&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=c62d54a5-183a-4a1e-a7e2-cc500ed1f19a&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?familyid=DC8332D6-565F-4A57-BE8C-1D4718D3AF65&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=DC8332D6-565F-4A57-BE8C-1D4718D3AF65&displaylang=en

p98

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

This is the key to making it sync with ActiveSync. You should see a cryptic string of letters and
numbers shown in the list. Right click on it and choose Cradle.

6. Open ActiveSync, then choose File | Connection Settings. In the Allow serial... droplist, select
DMA, then OK. ActiveSync should then find the emulator, and you can then setup a sync
partnership.

At this point, you can sync with the emulator just like a real device!

You can go ahead and install the SF runtime engine (use the link from the Start menu). Then, I
would suggest closing the emulator and saving its state, so that you do not need to go through
the cold boot and setup process next time.

Right click on the emulator in the Device Emulator Manager screen, and Uncradle. Then just
click on the close X button on the emulator window, and answer Yes to the prompt to save state.

Now, to start it again, go Start ... | Pocket PC - Savestate to load that saved session. Refresh
the Device Emulator Manager list, and re-cradle the emulator. (Sometimes ActiveSync does not
see the emulator when you restart it, so you might have to go through the Get Connected steps
again.)

p99

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Keywords: emulator, test, virtual, PocketPC, POSE, simulator

KB ID: 10032
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p100

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To use PalmDB (PDB) tables in a PocketPC
application
Problem: How To use PalmDB (PDB) tables in a PocketPC application

Updated: Starting with Satellite Forms 7.1, the recommended build target is named
"PocketPC". Wherever you see "PocketPC PDB" in the article below, use "PocketPC"
instead with Satellite Forms 7.1 and higher.

Solution: Starting with Satellite Forms 7.0, PocketPC applications can utilize the more
efficient Palm Database (PDB) format for handheld tables, instead of the PocketPC Compact
Database (CDB) format.

Using PDB format tables on the PocketPC offers numerous advantages over CDB format tables,
including:

 PDB tables are significantly smaller than CDB tables because of their more efficient structure.
While CDB tables have a minimum size of 48KB even when they are empty (128KB on
PocketPC 2002 devices), the minimum size of a PDB table is a mere 80 bytes.

 Using PDB tables on the PocketPC removes the reliance on the Microsoft ActiveSync functions
that convert desktop databases to/from the handheld CDB databases, thus improving the
speed and reliability of data synchronization. With the changes Microsoft made to ActiveSync
4.x, handheld database synchronization using CDB tables has become less reliable than it
was with ActiveSync 3.x, especially on Windows Mobile 5 powered devices. Using PDB tables
on the PocketPC avoids these reliability and performance issues.

 With the use of PDB tables on the PocketPC and PalmOS devices, the data tables can be
transferred between platforms with complete compatibility. You can use the same PDB tables
created on the desktop PC with both PocketPC and PalmOS handhelds. You can transfer PDB
tables directly between devices on different platforms, using infrared beaming, Bluetooth, or
SD memory cards.

 Compiling Satellite Forms applications for the PocketPC platform is quicker and easier using
PDB tables than it is with CDB tables, because there is no need to generate the handheld
tables on the connected device at compile time (this is how CDB tables are created, which
makes the compile process take longer). With the PDB format, the data tables can be
generated directly on the desktop PC without needing a connected PocketPC device.

 The same application target can be used for PocketPC 2002 devices in addition to PocketPC
2003, 2003SE, and Windows Mobile 5 for PocketPC devices. There is no need to build a
separate application target for PocketPC 2002 devices when using PDB tables, as there was
when using CDB tables. PocketPC 2002 CDB tables are not compatible with PocketPC 2003
and later devices.

To create a new PocketPC application that uses PDB tables, we recommend using the new
PocketPC application platform target. This build target is preset to use PDB tables on the
PocketPC platform. The figure below shows the PocketPC PDB platform option in the Add Target
selection screen that is displayed when you create a new project:

p101

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

To modify an existing PocketPC application to switch from PocketPC CDB databases to Palm
PDB databases, open the Project properties for your existing project. In the Device DB Format
droplist, select Palm DB instead of PocketPC DB. That build target will now generate and use
PDB tables instead of CDB tables.

Another possible option for existing applications is to add another build target using the
PocketPC platform to your project. This would result in your application having multiple build
targets, to select either the PocketPC CDB or Palm PDB format handheld tables as per your

p102

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

needs.

TIP: Unless you specifically require the PocketPC CDB format for the tables in your handheld
application (perhaps due to some server synchronization requirements, for example), we
recommend using Palm PDB format tables for your Satellite Forms PocketPC applications.
The advantages of the PDB format make it the preferred choice, especially on Windows Mobile 5
devices.

Keywords: Palm, PDB, PocketPC, CDB, table, platform, target, build

KB ID: 10033
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p103

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To use High Density Bitmaps in PalmOS
applications
Problem: How To use High Density Bitmaps in PalmOS applications

Solution: Starting with Satellite Forms 7.0, high density (HD) bitmaps can be used in
your PalmOS applications. Most Palm Powered devices running the PalmOS 5.x operating
system have higher resolution screens (320x320 pixels) than previous generation PalmOS
devices that have 160x160 pixel screens. Rather than adopting a design like most PCs where
the physical size of objects on the screen change based on the screen resolution, PalmOS
designers cleverly adopted a different approach where the density of objects on the screen
increased for higher display quality, but the physical size remains the same as with previous
generation standard density displays.

On Palm Powered devices with high density screens, the number of pixels in a screen object
is quadrupled in the same physical space, as the pixels have doubled both in width and in
height. This design automatically results in sharper fonts, and if the application includes
them, sharper images as well. On a device with the standard density screen, the standard
density fonts and images are shown.

Previous versions of Satellite Forms included support for standard density images only. Now,
with Satellite Forms 7.0, high density images for PalmOS applications are also supported. An
example application showing both a standard density and high density version of the same
image is shown below (displayed on a high density screen):

As you can see, the high density image occupies the same amount of space on the screen, but is
much sharper.

Assuming you are already familiar with how to use color bitmaps in your application, adding
support for high density images is easy. High density bitmaps are supported at the 8 and 16 bit
color depths. To add an 8 bit high density image to your application, save the high density
version of your bitmap with the -8-HD.bmp file suffix. To add a 16 bit high density image to
your application, save the high density version of your bitmap with the -16-HD.bmp file suffix.

p104

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

The HD versions of your bitmaps need to be exactly twice as wide and twice as tall as the
standard density versions. In the example above (included with SatForms 7.0 as the
HighDensityBitmaps sample project), the standard density bitmap is 44x43 pixels. The high
density version of the image is thus 88x86 pixels in size.

App Designer will always display the standard density version of the image in the form designer
view: it will not display the high density version of the image even if it is available.

Note: PalmOS record size limitations require that image families (a collection of the same image
at different color bit depths, eg. monochrome, 8-bit and 16-bit colors) must not exceed a total of
64KB in size. Because high density images require 4 times as many pixels as standard density
images, this limitation becomes much more of a concern than it does with standard density
images.

TIP #1: As demonstrated in the HighDensityBitmaps sample project, one strategy to reduce the
total size of a bitmap family in order to make room for high density images, is to reduce the
number if bit depths included in your image family. The Palm logo image in the sample project
is included at the required monochrome depth plus an 8-bit standard density, 16-bit standard
density, and 16-bit high density version. The app does not include an 8-bit high density version,
because high density PalmOS devices can automatically use the 16-bit version. In fact, if your
app is guaranteed to run only on PalmOS 5.x devices (whether they have standard density or
high density screens), you can opt to leave out the 8-bit images altogether in favour of just the
16 bit versions.

TIP #2: If you find that a particular image you want to display is simply too large, divide it in
half into two images. Place them side by side on your form, and the result should appear to be
the single full size image on the screen.

Keywords: bitmap, high density, HD, pixel, color, image, logo, picture

KB ID: 10034
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p105

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To use High Density Icons for your PalmOS
applications
Problem: How To use High Density Icons for your PalmOS applications

Solution: Starting with Satellite Forms 7.0, your application can now include high density
icons. You can add high density icons for both the standard and small (list view) sizes of your
application icon. High density icons look much sharper on the Palm application launcher
screen, because they use four times as many pixels as the standard density icons.

As described in the KB article How To use High Density Bitmaps in PalmOS applications, many
newer generation Palm Powered devices have higher density 320x320 pixel screens compared to
the older generation PalmOS devices that had 160x160 pixel screens. In addition to supporting
higher density bitmaps and sharper fonts, high density capable PalmOS devices can also support
high density application icons in the launcher screen. Satellite Forms 7.0 now enables you to
use both standard and high density application icons.

The sample images below demonstrate standard density and high density versions of the
HotSync icon:

 Standard High density

To add high density icons for your application, simply name your large color icon with the
-Color-HD.bmp file suffix, and place it in the same folder as your -Color.bmp standard density
icon bitmap file. To add an HD version of your small (list view) icon, simply name your icon
bitmap with the -Small-Color-HD.bmp file suffix.

The HD versions of your icon bitmaps need to be exactly twice as wide and twice as tall as the
standard density versions. Therefore, the high density version of your large size icon needs to
be 62x42 pixels, compared to the standard density color icon bitmap size of 31x21 pixels. The
high density small color icon needs to be 30x18 pixels, compared to the 15x9 size of the
standard density version.

TIP: To make icon creation for your PalmOS application easier, we recommend using the icon
templates provided in the \Templates subfolder of your Satellite Forms program folder.
Templates are provided for the standard and high density large icons, and standard and high
density small icons. The use of the template file also ensures that the correct PalmOS color
palette is used for your icons, resulting in the best possible image.

NOTE: If you do not include high density versions of your application icons, Satellite Forms will
automatically insert default high density icons. on devices with high density screens, these
default icons will be displayed instead of your standard density icons. The default high density
icon appear as a red circle with a pen, like these:

p106

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Keywords: icon, high density, HD, color, red circle

KB ID: 10035
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p107

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To support Expandable Screens in PalmOS
applications
Problem: How To support Expandable Screens in PalmOS applications

Solution: Starting with Satellite Forms 7.0, your PalmOS applications can now support the
expandable screens and dynamic input area available on some Palm Powered devices.

Background Information

Some newer PalmOS devices include support for using the area of the screen that was formerly
dedicated to the silk-screened Graffiti input area, and for rotating the display between tall
(portrait) and wide (landscape) display orientations. This area of the screen can display the
standard Graffiti input area, or other input options such as an onscreen keyboard, or it can be
utilized by applications to display larger forms. This area of the screen is known as the Dynamic
Input Area (DIA), and is sometimes called the "soft" or "virtual" Graffiti area.

Some Palm Powered devices that have dynamic input areas include the Palm Tungsten T3, T5,
TX, and LifeDrive, the Garmin iQue 3600, the Tapwave Zodiac 1 and 2, and some Sony
handhelds.

The screenshot below shows two different input configurations available on some PalmOS
devices with a Dynamic Input Area (DIA). The first shows the virtual Graffiti mode, which
resembles and acts like the standard input area on devices that do not have a DIA. The second
shows a keyboard input mode that is quite handy (these screenshots are from a Palm TX):

p108

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

p109

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Note the input trigger icon on the status bar, at the far right. The input trigger enables the
user to decide whether to display the DIA, or to minimize it for more screen space. The status
bar icon to the left of the input trigger in these screenshots allows the user to switch the screen
orientation between portrait mode and landscape mode. The Palm LifeDrive has a hardware
button on the side of the device to perform this function, instead of an icon on the status bar.

The next screen demonstrates the extra screen space that is available to applications when the
DIA is minimized. The form expands in height to become taller (portrait orientation) and a small
status bar is displayed along the bottom of the screen.

p110

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

When the DIA is minimized, 40% more screen area becomes available to the application, as
the effective screen height (or width, if in landscape mode) inreases from 160 pixels to 224.
How you decide to use that additional screen space is up to you -- do what makes the most
sense for each individual form in your application.

Satellite Forms DIA Control Overview

By default, Satellite Forms applications will still use the square 160x160 screen area on
DIA-capable devices, and the input trigger is disabled (greyed out). With the input trigger
disabled, the user cannot minimize the DIA, but they can still select which DIA input
configuration they want to use (eg. keyboard or virtual Graffiti, etc.). This is the way that older
Satellite Forms (and other) applications that did not specifically add DIA support behaved on
DIA-capable devices.

In order to support the Dynamic Input Area in SatForms PalmOS applications, a new
DynamicInputArea custom control extension has been created. When this DIA control is
added to your application, you gain these capabilities:

 You will receive an event (the OnClick event of the DIA control) when the size or orientation
of the screen changes. This enables you to respond to the hiding or showing of the DIA, and
changes in the screen orientation.

 You have the ability to query and change the DIA state (m inimized or maximized) and
orientation (portrait or landscape) from script code under your control, in addition to
responding to the use of the input trigger and/or orientation trigger.

p111

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

 You have the ability to disable the input trigger or orientation trigger, thus locking out the
user from changing those settings.

When you receive the event informing you that the DIA state or orientation has changed, you
can respond by moving or expanding controls on the form. How can you move or change the
size of controls? Satellite Forms 7.0 now includes the ability to get and set the position and size
of form controls at runtime through the new <control>.GetPosition and <control>.SetPosition
properties, as explained in the KnowledgeBase article "How To Move and Resize Controls at
Runtime".

The DIA control and SetPosition/GetPosition control properties are demonstrated in the sample
project "DynamicInputArea" included with Satellite Forms 7.0. Screenshots from that sample
application are displayed below.

The first screenshot below shows a typical SatForms application displaying some buttons, a
paragraph control, color bitmap, and edit control, with the DIA displayed (maximized). The
second screenshot shows the same form after responding to the event when the user minimized
the DIA by tapping on the input trigger. The form adapted to the increased screen size by
moving some controls down lower on the form, and expanding the paragraph control to display
more text.

p112

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

The next screenshot illustrates how the application responded to a change from portrait
orientation to landscape orientation, by increasing the width of the paragraph control and
shifting the centered button over to stay centered on the now wider screen.

p113

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Implementing DIA Support (Technical Details)

1. In order to support the DIA in your application, you must first include the DynamicInputArea
control in your project. Click on the Manage Extensions toolbar icon, and select
DynamicInputArea from the list of available extensions:

2. With the DIA control added to your application, several script functions to get and set the
various DIA options and states become available:

Some of these functions are intuitively named, while others might seem somewhat mysterious,
so we'll try to explain them here.

The current settings of the DIA (maximized or minimized) is known as the DIA State.

p114

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

PalmSource has defined these possible DIA states:

DIA State Value Description

0 The dynamic input area is being displayed. The
form is the standard 160x160 square dimensions.

1 The dynamic input area is not being displayed. The
form is either tall or wide, but is not square.

2 The input area is not dynamic, or there is no input
area on this device.

5 Pass this value to activate the last user-selected
input area state.

The current status of the input trigger is known as the Input Trigger State, with these possible
values:

Input Trigger
State

Description

0 The input trigger is enabled, meaning that the user
is allowed to open and close the dynamic input
area.

1 The input trigger is disabled, meaning that the user
is not allowed to close the dynamic input area.

2 There is no dynamic input area on this device.

The current status of the orientation trigger is known as the Orientation Trigger State, with these
possible values:

Orientation
Trigger State

Description

0 The orientation trigger is disabled, meaning that the
user is not allowed to change the display
orientation.

1 The orientation trigger is enabled, meaning that the
user is allowed to change the display orientation.

The current screen orientation can have one of these possible values:

Orientation State Description

0 Set this value to tell the system to activate the last
user-selected orientation.

1 The display is in portrait (tall) orientation.

2 The display is in landscape (wide) orientation.

3 The display is in reverse portrait orientation
(upside-down from the normal portrait orientation).

p115

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

4 The display is in reverse landscape orientation
(upsidedown from the normal landscape
orientation).

Finally, a dynamic input area Policy specifies how the dynamic input area should be handled
while a form is active. These values are possible:

Form DIA Policy Description

0 Forces the dynamic input area to stay displayed
while the form is active. The input trigger is
disabled.

1 The user and the application control whether the
input area is active.

Now that you understand the DIA jargon and have memorized all the possible values, we'll
explain how to put that knowledge to work in your application.

3. The DIA control is a custom control extension which must be added to your forms like other
custom controls such as the Symbol Integrated Scanner control. It is not visible on the device
screen, but is visible on the form design window in App Designer as a control that resembles the
input trigger on the status bar.

The control supports 5 control configuration settings:

DIAPOLICY = n
 where n is one of the form DIA Policy values listed in the table above. In order to allow the
user to control the DIA state via the input trigger on the status bar, set the DIAPOLICY=1. To
effectively disable DIA support and act just like older applications, set the DIAPOLICY=0. The
default value for this config option if omitted is 1. Get/Set values at runtime via script functions
DIA_GetFormDIAPolicy/DIA_SetFormDIAPolicy.

DIASTATE = n
 where n is one of the allowable DIA State values listed above. Setting this value to
DIASTATE=5 is a good option, because that sets the form to the last user-selected DIA state. It
stands to reason that if the user prefers to have the DIA closed (minimized), then they would
probably prefer to keep it that way while running your application too. The default value for this
config option if omitted is 5. Get/Set values at runtime via script functions
DIA_GetDIAState/DIA_SetDIAState.

DIATRIGGERSTATE = n
 where n is one of the allowable Input Trigger State values listed above. Set this value to
DIATRIGGERSTATE=0 in order to enable the user to change the DIA state via the input trigger,
or to DIATRIGGERSTATE=1 to prevent the user from changing the DIA state via the input trigger
on the status bar. The default value for this config option if omitted is 1. Get/Set values at
runtime via script functions DIA_GetTriggerState/DIA_SetTriggerState.

ORIENTATION = n
 where n is one of the Orientation State values listed above. The default value for this config
option if omitted is 0. Get/Set values at runtime via script functions
DIA_GetOrientation/DIA_SetOrientation.

ORIENTATIONTRIGGERSTATE = n

p116

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

 where n can be 0 to disable the orientation trigger or 1 to enable the orientation trigger. The
default value if omitted is 1. Get/Set values at runtime via script functions
DIA_GetOriTriggerState/DIA_SetOriTriggerState.

In addition, script methods are provided to determine if the device has DIA capability, and to get
the current screen width and height.

4. The DIAcontrol's OnClick event is fired whenever the display size or orientation is changed
(let's call this the resize event). Use this event to handle the moving & resizing of your form
controls in reaction to the display change. The sample application handles this by keeping track
of the form height, width, and orientation, and comparing those values to the current values
when the resize event is fired. The form's current height is obtained via the
DIA_GetDisplayHeight function; the current form width is obtained with the
DIA_GetDisplayWidth function. The current orientation is determined with a call to
DIA_GetOrientation. If the screen has in fact been resized, then the resize script moves some
controls to new locations and changes the size of some controls, as needed.

Here's an example of the script code to change the height of the paragraph control to make it
taller or shorter depending on the display height:

'calc paragraph size
dim pgHeight
if frmHeight > 160 then
 pgHeight = 88
else
 pgHeight = 44
endif

'expand paragraph height
pgText.SetPosition(4, 80, 152 + (frmWidth - 160)/2, pgHeight)

Here is an example of script code to center a button control based on the form width, and to
anchor it a specified number of pixels above the bottom of the form:

'center the button horizontally and place it 32 pixels above the bottom
btnCenter.SetPosition(44 + (frmWidth - 160)/2, frmHeight - 32, 74, 15)

Review all of the scripts in the DynamicInputArea sample project, and test it on a device or
simulator with DIA capability, to get a good feel for the possible advantages in supporting the
DIA in your application.

Conclusion

If your PalmOS application can benefit from the additional screen area available on devices with
the Dynamic Input Area, it is now possible to take advantage of this capability in Satellite Forms
7 using the DynamicInputArea control and the new .SetPosition and .GetPosition control
properties. Your users will appreciate the ability to use the extra screen space allowed by the
expandable screen.

Keywords: DIA, dynamic, input area, virtual Graffiti, soft Graffiti, expandable, PalmOS, T3,
T5, TX, LifeDrive

KB ID: 10036
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online

http://www.satelliteforms.net/KB/

p117

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Satellite Forms Website Home

-o-

http://www.satelliteforms.net/

p118

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Move and Resize Controls at Runtime
Problem: How To Move and Resize Controls at Runtime

Solution: Starting with Satellite Forms 7.0, new control methods are provided to move
and resize form controls at runtime. This capability is implemented for the PalmOS and
PocketPC platforms, and complements the PalmOS Dynamic Input Area support that is also new
with SatForms 7.0.

The .GetPosition method retrieves the current top left X and Y coordinates, width, and height of
the specified control.

GetPosition

Controls(ControlName).GetPosition(cX, cY, cW, cH)

Returns the current position (cX, cY) and size (cW, cH) of a control.

Parameters
ControlNa
me

Name of a control.

cX On return, contains the top left X coordinate of the control.

cY On return, contains the top left Y coordinate of the control.

cW On return, contains the width of the control.

cH On return, contains the height of the control.

Return
Value

None, the location and size values are returned in the cW, cY, cW, and cH
parameter variables.

Comments GetPosition is a method of the Control object. This method is useful when
combined with the new Dynamic Input Area support that enables you to move
and resize controls on a form in response to changes in the form size or
orientation.

Example 'example of control GetPosition and SetPosition methods
Dim cX, cY, cW, cH
'obtain the current location and size of Button1
Button1.GetPosition(cX, cY, cW, cH)
'move Button1 control down 10 pixels, right 10 pixels, widen by 5 pixels,
increase height by 5 pixels
Button1.SetPosition(cX+10, cY+10, cW+5, cH+5)

See Also SetPosition

The .SetPosition method enables you to modify the current top left X and Y coordinates, width,
and height of the specified control. This method allows you to both move and resize a control on
the form.

SetPosition

Controls(ControlName).SetPosition(cX, cY, cW, cH)

Modifies the current position (cX, cY) and size (cW, cH) of a control.

p119

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Parameters
ControlNa
me

Name of a control.

cX The new top left X coordinate of the control.

cY The new top left Y coordinate of the control.

cW The new width of the control.

cH The new height of the control.

Return
Value

None.

Comments SetPosition is a method of the Control object. This method is useful when
combined with the new Dynamic Input Area support that enables you to move
and resize controls on a form in response to changes in the form size or
orientation.

Example 'example of control GetPosition and SetPosition methods
Dim cX, cY, cW, cH
'obtain the current location and size of Button1
Button1.GetPosition(cX, cY, cW, cH)
'move Button1 control down 10 pixels, right 10 pixels, widen by 5 pixels,
increase height by 5 pixels
Button1.SetPosition(cX+10, cY+10, cW+5, cH+5)

See Also GetPosition

Keywords: move, resize, control, width, height, size, location, coordinate

KB ID: 10037
Updated: 2006-10-02

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p120

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To use the SFConvertPDB utility
Problem: How To use the SFConvertPDB utility

Solution: SFConvertPDB is a commandline utility included with Satellite Forms 7.0 that
enables you to convert database files from PDB format to/from DBF or MDB format, on the
desktop PC. It does not require a Palm HotSync or Microsoft ActiveSync session to be active, as
it runs entirely on the PC. This provides a handheld-platform-independent PC based mechanism
to convert data to & from PDB files, for use with Satellite Forms applications on the PalmOS
platform and on the PocketPC platform when using PalmDB database tables.

Updated July 11, 2007 to include new -CreateFlag parameter and table flag details.

A. Overview

SFConvertPDB enables you convert Satellite Forms table data from:

 PDB table to dBase DBF table
 PDB table to MS Access MDB table
 dBase DBF table to PDB table
 MS Access MDB table to PDB table

The SFConvertPDB utility does not make any assumptions or have any requirements about how
you get the PDB database file to the PC, whether it be via PalmOS HotSync, Microsoft
ActiveSync, TCPIP, Bluetooth file transfer, memory cards, server synchronization tools, etc. It
does not deal with the movement of the PDB file to/from the PDA; rather it deals with converting
the data between PDB <--> MDB/DBF on the desktop PC only. This makes it very flexible, and
enables it to be integrated into a PDA synchronization system regardless of how that system
moves the PDB file back and forth from the PDA to the PC.

SFConvertPDB is an EXE executable program, rather than an ActiveX control or DLL. To
integrate SFConvertPDB into your synchronization system, your sync application must be capable
of launching an EXE application.

SFConvertPDB operates via commandline switches, in which you supply the required information
about which database file to convert, and how to convert it. If you are familiar with the use of
the SatForms HotSync OCX control to move data back and forth at HotSync, you will find most of
these parameters to be familiar. If you have used the RDKInst or CeRDKInst utilities for
commandline installation of files and/or conduit registration, you will find the use of the
SFConvertPDB utility familiar as well.

B. Usage

Usage: SFConvertPDB [commandline switches]

-[PDBtoPC|PCtoPDB]: Specifies whether you want to convert from a PDB database to a
DBF/MDB database [use -PDBtoPC], or from a PC DBF/MDB database to a PDB [use -PCtoPDB].
You may specify only one of these conversion options, not both.

-filename \path\to\PC_database_file.[DBF|MDB]: You must supply the path and filename
of the PC DBF or MDB database file which you wish to convert to or from PDB. You do not
specify the PDB file even when converting from PDB to DBF/MDB: rather, you always supply the
PC database filename ending in .DBF or .MDB.

p121

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

-creatorid CRID: Where CRID is the four-character unique creatorID used by your application
(and which should be registered with PalmSource via their creatorID registry on their website),
as defined in the Project Properties settings screen in App Designer. You must supply the correct
case sensitive characters, which cannot include spaces. When testing with the SatForms SDK
runtime engine used by App Designer, the creatorid is SMSF. This parameter is needed in order
to generate the correct PDB table name for conversion, as the creatorid is incorporated into the
PDB table name. The default creatorid if none is supplied is SMSF.

-SDDI_DLL DLLfilename: You must specify the correct SatForms SDDI DLL to perform the
conversion. At the present time, the only conversion supported is for SatForms PalmDB (PDB)
databases, so you should always specify the SDDI_PalmDB.DLL. This parameter is optional, and
if you omit it, the default of -SDDI_DLL SDDI_PalmDB.DLL will be used.

-VersionMajor VV: Where VV is the major version number of your application, as defined in the
Project Properties settings screen in App Designer. The allowable values are from 0 - 99. This
parameter is needed in order to generate the correct PDB table name for conversion, as the
major and minor version numbers are incorporated into the PDB table name. This parameter is
optional, and if you omit it, the default value of 0 will be used.

-VersionMinor vv: Where vv is the minor version number of your application, as defined in the
Project Properties settings screen in App Designer. The allowable values are from 0 - 99. This
parameter is needed in order to generate the correct PDB table name for conversion, as the
major and minor version numbers are incorporated into the PDB table name. This parameter is
optional, and if you omit it, the default value of 0 will be used.

-CreateFlag n: Where n specifies the desired table flag[s] to set on the PDB table when it is
created by SFConvertPDB. The allowable values are any positive integer, corresponding to the
combination of desired table flags. Certain PDB table behaviours can be set via this numeric flag
value, including Backup, Read-Only, and NoAutoCommit flags. The table flags cause the
SatForms runtime engine to treat the table differently on the PDA. For a more detailed reference
about table flags, see section G: Table Flags below. This new parameter was added with
SFConvertPDB version 7.0.1.040 and higher and is not supported in previous versions. This
parameter is optional, and if you omit it, the default value of 0 will be used.

-quiet: This parameter instructs SFConvertPDB to not display any popup error messages when
performing the conversion. The exit code of SFConvertPDB can be queried to determine if the
conversion was successful or not, making it suitable for calling from sync applications or batch
files. When run interactively, you would not likely use the -quiet switch so that you could see
error messages pop up if there are conversion problems.

Example usage for common conversion scenarios:

1. Converting the database file C:\MyApp\Data\EMyAp0102_MYTABLE1.PDB to
C:\MyApp\Data\MyTable.DBF:

SFConvertPDB -PDBtoPC -filename C:\MyApp\Data\MyTable.DBF - creatorID MyAp -VersionMajor 1
-VersionMinor 2

Result: the C:\MyApp\Data\MyTable.DBF is created containing the records from
EMyAp0102_MYTABLE1.PDB.

2. Converting the database file C:\MyApp\Data\EMyAp0102_MYTABLE1.PDB to
C:\MyApp\Data\MyTable.MDB:

SFConvertPDB -PDBtoPC -filename C:\MyApp\Data\MyTable.MDB - creatorID MyAp -VersionMajor 1

p122

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

-VersionMinor 2

Result: the C:\MyApp\Data\MyTable.MDB is created containing the records from
EMyAp0102_MYTABLE1.PDB.

3. Converting the database file D:\Server\Data\tNames.DBF to
D:\Server\Data\EMyAp0200_TNAMES.PDB:

SFConvertPDB -PCtoPDB -filename D:\Server\Data\tNames.DBF - creatorID MyAp -VersionMajor 2
-VersionMinor 0

Result: the D:\Server\Data\EMyAp0200_TNAMES.PDB is created containing the records from
tNames.DBF.

4. Converting the database file D:\Server\Data\tNames.MDB to
D:\Server\Data\EMyAp0200_TNAMES.PDB:

SFConvertPDB -PCtoPDB -filename D:\Server\Data\tNames.MDB - creatorID MyAp -VersionMajor 2
-VersionMinor 0

Result: the D:\Server\Data\EMyAp0200_TNAMES.PDB is created containing the records from
tNames.MDB.

5. Converting the database file D:\Server\Data\tNames.MDB to
D:\Server\Data\EMyAp0200_TNAMES.PDB with a -CreateFlag value of 64 to indicate
NoAutoCommit table flag:

SFConvertPDB -PCtoPDB -filename D:\Server\Data\tNames.MDB - creatorID MyAp -VersionMajor 2
-VersionMinor 0 -CreateFlag 64

Result: the D:\Server\Data\EMyAp0200_TNAMES.PDB is created containing the records from
tNames.MDB and has the NoAutoCommit table flag set.

6. Converting the database file D:\Server\Data\tNames.MDB to
D:\Server\Data\EMyAp0200_TNAMES.PDB with a -CreateFlag value of 7 to indicate Backup +
Read-Only + Autoname table flags:

SFConvertPDB -PCtoPDB -filename D:\Server\Data\tNames.MDB - creatorID MyAp -VersionMajor 2
-VersionMinor 0 -CreateFlag 7

Result: the D:\Server\Data\EMyAp0200_TNAMES.PDB is created containing the records from
tNames.MDB and has the Backup + Read-Only + Autoname table flags set.

C. Integration into a PocketPC synchronization system using PocketPC PDB tables

Starting with Satellite Forms 7.0, it is possible to use PalmDB (PDB) tables with PocketPC
applications, and there are several advantages in doing so instead of using Microsoft Compact
Database CDB format tables. In order to build a successful PocketPC data synchronization
system when using PDB tables, integrated with your desktop PC database system, you need to
be able to handle these four actions:

p123

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

 conversion from your PC database table to a PDB database table
 transferring a PDB table from the PC to the PDA (download data to the PDA)
 transferring a PDB table from the PDA back to the PC (upload data to the PC)
 conversion from a PDB table to your desktop PC database table

The SFConvertPDB utility provides the means to convert PDB <--> DBF/MDB on your PC. The
action of transferring PDB files between the PDA <--> PC can be achieved in multiple ways. Two
of those file transfer methods include using the Satellite Forms ActiveSync OCX, or using the
Satellite Forms CeRemote.DLL.

When using the SatForms ActiveSync OCX, the functions FileGetFromPPC and
FileSendToPPC can be utilized to transfer PDB tables to/from the PocketPC. This is in contrast
to the DatabaseFromPPC and DatabaseToPPC functions that are used with CDB database tables.

A typical data synchronization flow using the SF ActiveSync OCX to retrieve a PDB database
table from the PocketPC, then send an updated PDB table back to the PPC, would go something
like this:

 retrieve the PDB table from the PPC using FileGetFromPPC
 convert the PDB table to MDB/DBF using SFConvertPDB
 manipulate that data in your PC database, creating an updated DBF/MDB
 convert the updated DBF/MDB table to PDB using SFConvertPDB
 download that updated PDB to the PPC using FileSendToPPC

When using the SatForms CeRemote.DLL to transfer files, the functions GetFile and SendFile
can be utilized to transfer PDB tables to/from the PocketPC. This is in contrast to the GetTable
and SendTable functions that are used with CDB database tables.

A typical data synchronization flow using the CeRemote.DLL to retrieve a PDB database table
from the PocketPC, then send an updated PDB table back to the PPC, would go something like
this:

 retrieve the PDB table from the PPC using GetFile
 convert the PDB table to MDB/DBF using SFConvertPDB
 manipulate that data in your PC database, creating an updated DBF/MDB
 convert the updated DBF/MDB table to PDB using SFConvertPDB
 download that updated PDB to the PPC using SendFile

A sample PocketPC synchronization tool written in Visual Basic 6 called SatSyncPPCPDB is
provided in the Samples folder of the Satellite Forms installation. This SatSyncPPCPDB sample
application demonstrates the use of the CeRemote.DLL and SFConvertPDB utility to sync PDB
data back and forth between the PC and PocketPC.

D. Integration into a PalmOS synchronization system

Satellite Forms has used PalmDB (PDB) format database tables for many generations, and
synchronization between the PalmOS handheld and PC DBF/MDB databases has been enabled
through the Satellite Forms HotSync conduit and the Satellite Forms HotSync OCX. The
SatForms HotSync OCX provides functions for sending PC database data to PDB tables on the
PDA, and retrieving PDB data from the PDA to the PC database tables at HotSync, via the

p124

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

CopyTableToPalmPilot and GetTableFromPalmPilot functions. For most SatForms
developers, this synchronization system is ideal, and no other options are needed.

However, some SatForms PalmOS application developers need to synchronize data without
relying on Palm HotSync as the data transfer mechanism. Palm HotSync does have its
limitations, not the least of which is that it only supports the synchronization of a single Palm
device at a time: simultaneous HotSync synchronization of multiple devices is not possible on a
single PC. It is for that reason that the SFConvertPDB utility may be of interest to SatForms
PalmOS application developers in addition to SatForms PocketPC PDB app developers.

Let's consider an example using the File Transfer Protocol (FTP) to transfer PDB database files
back and forth between a TCPIP-connected PalmOS device (for example a Palm Treo smartphone
or TX PDA) and a PC database server. A typical data synchronization flow using FTP to transfer
the PDB files would go something like this:

 upload the PDB table from the PDA to PC server using FTP (for example with the PalmDataPro
SF-FTP extension)

 convert that PDB table on the server to DBF/MDB using the SFConvertPDB utility
 manipulate that data in your PC database, creating an updated DBF/MDB
 convert the updated DBF/MDB table to PDB using SFConvertPDB
 download that updated PDB table to the Palm PDA using FTP (via SF-FTP extension)

E. Installation of components needed by SFConvertPDB

SFConvertPDB relies on several Satellite Forms components included in the Satellite Forms
Runtime for PalmOS (not to be confused with the SatForms PalmOS runtime engine). Installing
the Runtime package is the easiest way to ensure that all of the necessary components needed
by SFConvertPDB are installed and registered correctly. See the article How To Install the
SatForms Runtime for Palm silently for tips on how to install the runtime without any installation
UI on end users' computers. Note that this runtime needs to be installed on any computer that
will use the SFConvertPDB utility, regardless of whether that computer syncs with PalmOS
devices, and/or PocketPC devices, or does not perform any device synchronization at all.

F. SFConvertPDB Error Codes

Error
Code

Error Name Description

0 appErrNone no error

-1 appErrOleInitFailed OLE is needed to use MDB. Somehow MFC failed
to init OLE.

-2 appErrInvalidSwitch unrecognized switch

-3 appErrCreatorIDBadLength creator ID must be exactly 4 chars

-4 appErrUnknownParserState bad logic, should not have ended up in a bad
parser state

-5 appErrFailToLoadSDDI failed to load SDDI plugin

-6 appErrSDDIPluginNoAPI this sddi plugin is missing APIs

-7 appErrSDDIPluginBadVersion plugin is too new or too old

-8 appErrSDDICantInstantiate calling new fails

p125

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

-9 appErrGenericError unknown exception when calling SDDI DLL

-10 appErrConvertException sfddb exception when calling SDDI DLL

-11 appErrConvertError SDDI API fails

-12 appErrConversionTypeNotSpecifie
d

user did not specify -pctopdb or -pdbtopc

-13 appErrFilenameNotSpecified user did not specify filename

-14 appErrConversionTypeAmbiguous user specified both -pctopdb and -pdbtopc

-15 appErrFilenameNotExist MDB or DBF file to convert does not exist

-16 appErrPDBFilenameNotExist PDB file to convert does not exist

G. Table Flags

One of the properties of a Satellite Forms table PDB is the Table Flag value. The Table Flag is a
numeric value that determines special behaviours of that table when it is in use on the PDA by
the Satellite Forms runtime engine. For example, one of the possible table flag values indicates
that the table is Read-Only, and the runtime engine therefore prevents any
modifications/additions/deletions to the data in the table.

The Table Flags for each table PDB can be specified using the -CreateFlag parameter of the
SFConvertPDB utility. Each table can have different flags as they are assigned on a per-table
basis. The current supported table flags include:

Flag value Flag name Flag description

0 No table flags No special table behaviours - regular table

1 Backup The table will be backed up at Hotsync (PalmOS
behaviour only)

2 Read-Only The runtime engine will prohibit table
modifications/additions/deletions and will only permit
read access to the table data (PocketPC runtime engine
will close read-only tables more quickly than read/write
tables)

4 Autoname The desktop table name will automatically match the
logical table name (Link table name to filename option
in App Designer table editor)

64 NoAutoCommit The table data that is cached in memory while the
application is open will not be automatically committed
to storage when the app closes. To save the data before
closing, you must call the CommitDatabase function
explicitly for each NoAutoCommit table. This flag is
implemented on the PocketPC platform only, and is
ignored on the PalmOS platform. The NoAutoCommit
flag enables you to allow tables to close more quickly by
not automatically committing them to storage when the
app closes, like a read-only table.

Some table flag values can be combined, while others must be exclusive. For example, the
Backup, Read-Only, and Autoname flags can all be present on a given table, and you would
specify all of those flags by adding their flag values together ([Backup] 1 + [Read-Only] 2 +
[Autoname] 4 = 7). The Read-Only and NoAutoCommit flags must be exclusive to each other:

p126

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

do not combine them together.

H. Conclusion

The SFConvertPDB utility is a flexible tool that can be used as an important component in a
PalmOS or PocketPC PDB data synchronization system. Because SFConvertPDB operates on the
PC and does not rely on any specific PDA <--> PC data transport layer or protocol, it can be
integrated into a wide variety of synchronization scenarios including PalmOS HotSync, Microsoft
ActiveSync, TCPIP, Bluetooth file transfer, memory cards, server synchronization protocols, and
more.

Keywords: SFConvertPDB, convert, conversion, PDB, CDB, HotSync, ActiveSync, sync,
synchronization, transfer, TCPIP, FTP, DBF, MDB, database, CreateFlag, flag, NoAutoCommit,
Read-Only

KB ID: 10038
Updated: 2007-07-11

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p127

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To use SatSyncPPC to sync PocketPC data
Problem: How To use SatSyncPPC to sync PocketPC data

Updated: Starting with Satellite Forms 7.1, the SatSyncPPC and SatSyncPPCPDB
sample desktop sync projects for PocketPC applications have been merged together
into a single SatSyncPPC target, which supports syncing desktop data with PDB
databases on the PocketPC, using either the Satellite Forms ActiveSync OCX or the
CeRemote.dll non-ActiveX approach. The information below is applicable to the
SatSyncPPC sample included with Satellite Forms 7.1.

Solution: SatSyncPPCPDB is a sample application written in Visual Basic and provided in
the \Samples folder of your SatForms installation. SatSyncPPCPDB demonstrates how to send
and receive data between the desktop PC and PocketPC handheld, using the Satellite
Forms CeRemote.dll and SFConvertPDB utility. This sample is designed for PocketPC
applications using PalmDB (PDB) format databases on the handheld. To see a related example
based on the SatForms ActiveSync OCX and the use of CDB handheld database tables, see How
To use SatSyncPPC to send data to the PocketPC device.

SatSyncPPCPDB is not only a valuable tool to help you learn how to create your own PocketPC
synchronization system, it is also a very useful utility in its own right for developers and perhaps
even end users of your application.

SatSyncPPCPDB demonstrates these following PocketPC synchronization tasks:
 retrieve a PDB table from a PocketPC
 convert a PDB table to MDB/DBF
 convert a DBF/MDB table to PDB
 download a PDB to the PocketPC

These instructions assume that you have created and compiled your application in App Designer,
and want to send data from an existing database table on the PC to the handheld. It is also
possible to bring this data back into the table editor in App Designer with an additional step. If
your data already exists in the App Designer table editor, there is no need to follow these steps,
since you can just use the Handheld | Download App & Tables function. These instructions are
for sending data from an existing PC database to your SatForms application on the handheld,
and optionally bringing that data back into the App Designer table editor.

1. Start the SatSync sample application in \Samples\SatSyncPPCPDB.
2. Select File | New, then File | Configure Send List.
3. Select the DBF or MDB files to send data to the handheld.
4. Specify the correct creatorID and version numbers for your application, matching the settings
in the Project Properties settings in App Designer.
5. Specify the folder on the PocketPC to send the database files to. Generally this will be
something like \My Documents\MyApp. SatSyncPPCPDB will create this folder if it does not exist
when the files are transferred.
6. Save your SatSync config file, then click on Send Tables to PocketPC. If the PocketPC device
is not currently connected, an error message is displayed. Otherwise, the data should get sent
to the handheld, where it now resides in the handheld tables in the specified folder.
SatSyncPPCPDB will display the file transfer results in the status field on the main form.

To bring the handheld data back to a desktop database file, you would Configure Get List, and
then initiate the transfer by clicking on the Get Files from PocketPC button.

Another option is to bring data back into the App Designer Table Editor. Simply start App
Designer, select Handheld | Upload Tables and the data is brought back into the Table Editor.

p128

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

SatSyncPPCPDB performs the tasks of transferring PDB database files between the PC <--> PDA
using the Satellite Forms CeRemote.dll. The functions of this DLL are declared in Module1
(SF_PPC_API.bas). The reference documentation for this DLL is the CeRemoteAPI.h header file
located in the \Satellite Forms 7\Include folder.

The conversion between PDB <--> DBF/MDB is carried out on the desktop PC by calling the
functions in the SFConvertPDB utility. SatSyncPPCPDB calls SFConvertPDB to perform the
conversion, and checks the return value to determine if the conversion succeeded or failed.

The combination of the database file transfer and database file conversion functions provides the
ability to create a complete data synchronization system for Satellite Forms PocketPC PDB
applications.

Keywords: SatSync, SatSyncPPCPDB, PocketPC, PDB, VB, sample, sync, synchronization,
SFConvertPDB, DBF, MDB, database

KB ID: 10039
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p129

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Change Control Fonts at Runtime
Problem: How To Change Control Fonts at Runtime

Solution: Starting with Satellite Forms 7.0, a new control property is provided to change
control fonts at runtime. This capability is implemented for the PalmOS and PocketPC platforms.

Font

Controls(ControlName).Font

Returns or sets the current FontID of a control.

Parameter ControlName Name of a control.

Return
Value

The current FontID of the control, an integer value from 0..7 (PalmOS) or 0..3
(PocketPC) corresponding to this table of FontIDs:

Font
ID

Font Description
PalmOS

Font Description
PocketPC

0 Normal 9 Tahoma 8

1 Bold 9 Tahoma 8 Bold

2 Normal 12 Tahoma 10

3 Symbol 9 Tahoma 10 Bold

4 Symbol 11 n/a

5 Symbol 7 n/a

6 LED n/a

7 Bold 12 n/a

Comments Font is a property of the Control object. You can change a control's font property
by setting this property to one of the specified FontID values. In that case, the
function does not return a value.

Example 'Example of Font property
'InputA is an edit control.
'change InputA font to Bold
If InputA.Font = 0 Then
 InputA.Font = 1
EndIf

See Also SetPosition

Keywords: Font, control, normal, bold, Tahoma, FontID

KB ID: 10041
Updated: 2006-10-02

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p130

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

p131

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Enable a User to Interrupt a Closed Loop
Problem: How To Enable a User to Interrupt a Closed Loop

Solution: Under normal circumstances, a For..Next loop or While..Wend loop cannot be
interrupted until it has completed. This is known as a closed loop. Sometimes, however, it may
be advantageous to enable a user to interrupt a closed loop in your application, allowing them to
stop a potentially lengthy process.

It is in fact possible to interrupt a closed For..Next loop, using a heretofore undocumented
method. Using this method, a pen tap can be used to interrupt the loop. No timer function is
required.

The key is to check the pen status in your loop just before the Next statement. For example, if
you add this to your loop just before the Next j:

For j ...
 ...
 'check for pen tap to interrupt loop
 if GetPenStatus(x,y) = true then Exit For
Next j

That enables the user to tap anywhere on the screen to interrupt the loop. The script then jumps
to the statement immediately following the Next statement.

If you want to restrict the valid screen area that the user can tap on to interrupt the loop (for
example on a Stop button), then further qualify your GetPenStatus check with the x/y pen
coordinates. For example, let's say we have a STOP button on the screen with the rectangle
bounds 0,120,160,160. You could just allow taps in that rectangle (actually just the y range
120..160 because the x ranges from 0..160) to stop the loop:

For j ...
 ...
 'check for pen tap on Stop button to interrupt loop
 if (GetPenStatus(x,y) = true) and ((y >= 120) and (y<=160)) then Exit For
Next j

This same technique can apply to While..Wend loops. This technique is applicable to both the
PalmOS and PocketPC platforms.

Power Tip: Script Debugging Aid

The GetPenStatus function can also be used for script debugging as a pseudo breakpoint, for
times when you want to pause a script without displaying a msgbox or using a delay statement.
You can pause the script until the screen is tapped, and it then resumes from there.

An example would be:
'doing stuff before this, want to pause now
dim pX,pY
while GetPenStatus(pX,pY) = false
wend
'script resumes when the screen is tapped

The device will sit there in the endless While..Wend loop until you tap the screen.

Keywords: loop, interrupt, pause, GetPenStatus, debug, for, next, while, wend

p132

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

KB ID: 10042
Updated: 2006-10-02

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p133

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Bundle the SatForms PocketPC runtime engine
with your app
Problem: How To Bundle the SatForms PocketPC runtime engine with your app

Solution: Satellite Forms 7 introduces a new way to bundle the PocketPC runtime engine
with your application, enabling you to create app installations that are more simple, robust,
and professional. This new improved installation approach is supported only when using the
PDB device database format on PocketPC, and is not available when using CDB device database
files.

Updated for Version 8: With Satellite Forms 8 there is a new capability to use an
integrated runtime engine, which removes the need to install the runtime engine
SatForms80.exe file separately from the application EXE file.

The previous approach, still supported in SatForms 7 and requried when using CDB database
files, was to install the SF PocketPC runtime engine centrally in the \Windows folder on the PDA,
and use that runtime engine for all of the SatForms apps installed on the device. A runtime
engine installer is included in SatForms for this purpose. This approach does work fine if all of
the SatForms apps on the device are created using the same version of Satellite Forms, but can
be problematic when there are apps written with different versions of Satellite Forms.

The new recommended approach in SatForms 7 is to bundle the required SatForms runtime
engine files directly with your application files, together in your application folder. Using this
new approach, your installation becomes more robust, as your app will not be affected by other
older SatForms applications being installed on the same PDA. Your installation can be more
simple, because you can now use practically any method available to install your complete app
onto the device, including simply dragging and dropping a folder from the desktop to the PDA,
using the SatForms CeRdkInst utility, installing from a CAB file, or using a full installer like that
created by EzSetup, PocketSetupInstaller, NSIS, InstallShield, etc. Your installation becomes
more professional, because the Satellite Forms runtime engine is not listed separately in the
Remove Programs list on the device, and so it presents a more complete, unified appearance to
the end user.

How It Works

To make the bundled runtime approach work, you must do two things. First, you must create an
icon for your application as per the instructions in the Satellite Forms help, so that when you
compile your PocketPC application, both a .PDA and .EXE file area created. If you do not create
an icon for your project, the .EXE file will not be created, and the bundled runtime approach will
not work. Second, you must copy the SatForms70.exe and DvSddi_PPCPDB.dll files from the
\Satellite Forms 7\Runtime\PocketPC folder to your application folder on the PocketPC.

When the user taps on the app.EXE file to launch your app, it will search for the SatForms70.exe
file in the app folder. If the SatForms file is found, then it is used to directly run your
application.

If the SatForms file is not found, it will then try to launch your app via the PDA file, using the
app that is registered to handle the PDA files (the SF runtime installer registers the runtime
engine to handle PDA files when it is installed -- this is the approach used in previous versions).

We've added another article entitled How To Create an Installer for your SatForms 7 PocketPC
Application that describes the complete step by step approach for creating a single-EXE installer
for your SatForms 7 PocketPC PDB application using the bundled runtime method. Following this
approach, you can create a simple, clean, professional looking installer for your PocketPC

p134

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

application.

Keywords: bundle, runtime, PocketPC, Windows Mobile, install, setup, deployment

KB ID: 10043
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p135

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Create an Installer for your SatForms 7
PocketPC Application
Problem: How To Create an Installer for your SatForms 7 PocketPC Application

Solution: There are several different approaches to creating an installer for your SatForms
PocketPC application. Satellite Forms 7 introduces a new and improved capability to bundle the
SatForms runtime engine files directly with your application files for an optimal end user
experience. This article presents an approach that generates a single exe file to install your
compiled application and bundled Satellite Forms runtime engine to the PocketPC, providing a
simple, robust, and professional installation.

Updated for Version 8: With Satellite Forms 8 there is a new capability to use an
integrated runtime engine, which removes the need to install the runtime engine
SatForms80.exe file separately from the application EXE file.

This example describes all steps needed to create an installer for the PocketPC application "Work
Order Sample.exe", based on the SF sample project "Work Order". Directories and program
names can be modified to suit your own application by changing the references in the
files described below. The process described herein will enable you to create a single-EXE
installer file for your SatForms 7 PocketPC application. This approach requires that the PocketPC
application uses the PDB device database format, and not CDB database files. The single
installer created by this process is compatible with PPC 2002, 2003, 2003SE, and Windows
Mobile 5 devices.

The overall approach is to create a PocketPC CAB file for your application with the bundled
SatForms runtime engine, and then convert that CAB file into a single EXE installer.

NOTE: Do not let the length of this article dissuade you from using this installer creation process.
This article is quite long and liberally illustrated so as to ensure no steps are left out, but you will
find it is a straightforward process to create you own app installers using this method, and the
professional looking results are worth the investment of your time.

This installer creation method utilizes a freeware PocketPC installer creation tool called Pocket
PC Installation Creator, from Aperitto Software. There are many other installer creation tools
that could be used including free tools such as NSIS, Inno Setup, PocketSetupCreator, and
EzSetup, as well as numerous commercial tools such as InstallShield, Wise Installer,
e-PocketSetup, and PocketPC Installer. Pocket PC Installation Creator handles the difficult task
of correctly creating a CAB file, with no manual editing of INI files, batch files, or anything like
that. It presents an easy wizard interface to enter all of the required information, and then
generates the CAB and EXE files for you!

A. What does the installer do?

It implements a complete install program for the your PocketPC application. The install program
"WorkOrder_Setup.exe" in this example does the following (note that the PPC must be connected
to the desktop and ActiveSync must be running):
1. Displays a readme notice and then license agreement (EULA) which the user must accept to
proceed (you supply the text).
2. Installs the application "Work Order Sample.exe", the bundled SF7 runtime engine files and all
*.PDB files into the "\Program Files\Work Order" folder on the PPC.
3. Creates a shortcut for the program in "\Windows\Start Menu\Programs" on the PPC.
4. Registers the program and creates an "Unload" file on the PPC for future deletion of the
application.

p136

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

B. Files required to create the installer

1. Pocket PC Installation Creator, from Aperitto Software

This freeware tool from Aperitto Software is available in our Support Files section at
http://www.satelliteforms.net/support/ppc_installation_creator_setup.exe (the original author's
URL is no longer valid).

Install the Pocket PC Installation Creator tool and accept all of the default install options.

2. Application files: Work Order Sample.exe (icon/executable for PPC), Work Order Sample.pda,
all *.PDB files in the AppPkg folder (ESMS20000_WRKLOOKUP.PDB,
ESMS20000_WRKSITES.PDB, ESMS20000_WRKWORKITEMS.PDB), and the SatForms70.exe and
DvSddi_PPCPDB.dll runtime engine files. Create the PDA, EXE, and PDB files by c ompiling the
PocketPC PDB target of the Work Order sample project included with Satellite Forms 7. Copy the
SatForms70.exe and DvSddi_PPCPDB.dll files from the \Satellite Form 7\Runtime\PocketPC
folder to the location where the other application files are stored (in this example, they are all
copied to a
C:\My Documents\WorkOrderInstall\PocketPC PDB folder.

3. Readme and EULA text files:
setup_readme.txt, eula.txt

Create these two text files as needed for your application. In our example, the setup_readme.txt
file contains this text:

The SampleCo Work order application will be installed to your Windows Mobile/PocketPC PDA.
After the installation has completed, you can run the Work Order application by tapping on
Start | Programs | Work Order.

The sample EULA.txt file contains this text:

End user License Agreement

Insert lawyer-approved text here...

Copyright (C) 2006 SampleCo Corporation

C. Step By Step Process

C.1 Start the PocketPC Installation Creator application. It will open to a blank screen that says
"No project is loaded. Please open or create a new one.". Click on the new project icon in the
toolbar (the white paper icon). Enter the name of your installer project, for this example enter
WorkOrder and click on Save.

C.2. The Common Settings form is displayed. In the Provider field, enter your company name
(in this example we are using SampleCo). In the AppName field enter your application name (in
this example we are using Work Order). Leave the other fields unchanged. Click on the Target
Platforms icon to go to that form.

http://www.satelliteforms.net/support/ppc_installation_creator_setup.exe

p137

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

C.3. The Target Platforms form is displayed. Check the box next to CEDevice in the Target Label
list so it is selected. Click on the BuildMax droplist and select "Supports both square screens and
screen rotation". This ensures that you will not receive the "this app may not run on this version
of Windows Mobile" warning when the app is installed. Click on the Desktop Side icon to go to
that form.

p138

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

C.4. The Desktop Side Disks and Files form is displayed. This is where we will select all of the
files to be installed to the PDA. In the Details and Actions box at the bottom of the form, click on
Add Source Disk. The Edit SourceDiskNames dialog is displayed. In the Comment field enter
App Files, and then browse to the folder where you have placed all of your PDA files (in this
example C:\My Documents\WorkOrderInstall\PocketPC PDB), then click OK.

p139

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

C.5. Now click on the [+] next to SourceDiskNames [Default] which expands to show App Files.
Select App Files, then click on Add Files to this Source Disk in the Details and Actions box. The
PDA files located in your app files folder should be shown in the list on the left hand side. Click
on the >> button to copy all of those files to the list on the right hand side, then click OK. If you
click the [+] next to App Files, you should see all of your PDA files listed. Now click on the
Pocket PC Side icon to go to that form.

p140

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

C.6. The Pocket PC Installation Settings form is displayed. In the CopyFiles Sections in the top
right corner, click on Add. The CopyFiles Properties dialog is displayed. Enter Files in the Name
field, then click on the << button to copy all of your PDA files from the list on the right hand side
to the list on the left hand side. Click on OK to close that dialog.

p141

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

C.7. Now, click on the Add button in the Shortcuts Section in the bottom right of the form, and
the ShortCuts Section dialog is displayed. Click on the Add button in the Shortcuts Section
dialog, and the Shortcut Editor dialog is displayed. Set the Shortcut Filename to your app name
(eg. Work Order). This is the name that your app icon will have in the Programs folder on the
PDA when the install is completed. Click the Target droplist, and select your application EXE file
from the list (Work Order Sample.exe in this example). Click on OK to close the Shortcut Editor
dialog, then click OK to close the Shortcuts Section dialog.

p142

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

C.8. Next, click on the < button in the Available CopyFiles list to copy Files over to the Selected
CopyFiles list. Then click on the < button by the Available CEShortcuts list to copy
aShortcutSection over to the Selected CEShortcuts list. You have now completed this form, click
on the Builder icon to go to the final Builder form.

p143

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

C.9. The Builder form is displayed. Enter your Application Name (Work Order in this example),
and enter a filename for your installer executable filename (eg. WorkOrder_Setup.exe). Enter a
short Description (eg. SampleCo Work Order application). Enter the same application name in
the Uninstall field (eg. Work Order).

IMPORTANT: The Version number field must ALWAYS be set to 1.0. This
is the PocketPC CAB format version number, and NOT your application version number. Be sure
it is set to 1.0 or the installation will fail!!

Browse to select your EULA text file (eg. EULA.txt) for your app license agreement, and your app
readme text file (eg. setup_readme.txt). These will be displayed in the installer when it is run.

p144

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Almost finished! Now, let's save the data we have entered before building. Click on the Save
disk icon on the toolbar to save your installer creation data file.

C.10. We're ready to build the CAB file. Click on Build .Cab(s) and the CAB file should be
generated. You will see 2 warning messages that say "Warning: Section [DefaultInstall] key
"AddReg" - there are no section entries to process", but they can be safely ignored. If you see
any other error messages, then you will need to correct whatever errors they refer to before
proceeding.

If you want to distribute just a CAB file that the user can install directly from the File Explorer on
a PocketPC, you are done. However, most developers want to go the additional step of creating
an installer that runs on the desktop PC. [Also, if you want to use a different final setup EXE
builder tool that works from a CAB file, such as PocketSetupCreator, you can use the CAB you
just created for that purpose.]

C.11. Now, the final step: click on Build Installation, and the CAB file will be used to generate
your app setup exe file (eg. WorkOrder_Setup.exe). If all goes well, the status window should
show the setup exe (eg. WorkOrder_Setup.exe) successfully written, and Build installation

p145

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

ended.

That's it, your installer is completed!

Now, let's test our new app installer. From the Windows Explorer, launch the setup exe (eg.
WorkOrder_Setup.exe) that was generated. The initial installer screen is displayed, including the
readme file contents.

p146

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Click Next and the License Agreement screen is shown.

When the user accepts the terms of the license agreement and clicks Finish, the ActiveSync
Add/Remove Programs dialog is displayed, and the Installing Applications prompt is shown,
giving the user one last chance to cancel the install.

p147

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

When the user affirms this prompt, the application is then installed to the PocketPC device.

The application can now be launched by tapping on Start | Programs | and then the application
shortcut (eg. Work Order).

Success!

Keywords: PocketPC, Windows Mobile, install, installer, CAB, CABWiz, setup, installation,
deployment, uninstall

KB ID: 10044
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p148

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

-o-

p149

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Create a shortcut to your PocketPC application
Problem: How To Create a shortcut to your PocketPC application

Updated: Starting with Satellite Forms 7.1, when you compile your PocketPC
application and include an icon for it so that an EXE application is generated, MobileApp
Designer will automatically create an application shortcut .Lnk file for you, and place it
in the AppPkg folder. See the Satellite Forms 7.1 manual for more information. The
information below for manually creating shortcut files is retained for Satellite Forms
7.0 and earlier.

Solution: This article explains how to programmatically create a shortcut to your
application on the PocketPC, without using an installer. The shortcut appears in the Programs
menu on the PocketPC.

A. Background Information

When you install your application to a PocketPC, you usually want to have a shortcut to your
application appear in the programs screen on the PPC. This makes it easier for the user to start
your application, by tapping on Start | Programs and then on your icon. The shortcut takes care
of launching your app, wherever it happens to be located (eg. in \My Documents\YourApp or
\Program Files\YourApp).

How do you create this shortcut? Usually, this task has been carried out by using an application
installer to install your app to the PPC. The
installer takes care of copying your application files to a specified folder on the PPC, and creating
a shortcut to your app in the Programs screen. Examples of some software tools used to create
PocketPC app installers include the freeware tools EzSetup, Pocket PC Installation Creator,
PocketSetupCreator, and NSIS, as well as commercial tools like InstallShield, e-PocketSetup,
Spb AirSetup, etc.

Users can also create shortcuts manually. However, this is something you would generally want
to take care of programmatically, instead of expecting the user to carry out this task manually.
Asking the user to create a shortcut manually does not make for a good user experience.

There is another way to create this shortcut for your user automatically, without using an
installer. For some developers, this task of creating the shortcut may have been the only reason
that they used an installer, as they could carry out the rest of the app installation tasks using the
CeRDKInst tool included with Satellite Forms. Using this new approach, the shortcut file is
created manually on the PC, and that shortcut file is sent to the PocketPC along with all of the
other application files, using the CeRDKInst tool. No PocketPC application installer is required.
This may be the preferred approach for corporate/enterprise deployments, where other features
of an installer (eg. display of a license agreement and readme file) are not needed.

B. Creating the Shortcut on the Desktop PC

The key to understanding this approach is recognizing that the shortcut you see in the PPC
programs folder is actually just a file with certain
properties, placed in a certain location on the PocketPC. That file can be created on the desktop
PC using any standard text editor, then copied to the right location on the PocketPC.

The shortcut file should be named as you want it displayed in the programs folder, with a .lnk
file suffix. For example, if your app is called
SuperDuperApp.exe, but you would like it to be listed in the programs folder as "Super Duper",
you would create the file "Super Duper.lnk". The name of the shortcut does not have to match

p150

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

the name of your application EXE file.

NOTE: Windows treats files with the .lnk suffix in a special manner, and considers them to be
desktop shortcut files. This means it may be difficult for you to work with the file using Windows
Explorer, as it does not treat the file like a regular text file. We find that opening your text
editor, and then loading the shortcut .lnk file from within your text editor is easier than trying to
work with the file in Windows Explorer.

The .lnk file itself is just a regular text file, containing the following text:

nn#"\Path\To\Your App.exe"

nn is a decimal number equal to the length of the exe file path string, including the starting and
ending quote chars

is a literal # character

"\Path\To\Your App.exe" is the path to your application EXE file

So, let's use the example of creating a shortcut to the \My
Documents\SuperDuperApp\SuperDuperApp.exe app, using the shortcut name
"Super Duper". Create a text file named "Super Duper.lnk" which includes this single line of
text:

47#"\My Documents\SuperDuperApp\SuperDuperApp.exe"

Remember that 47 is the length of the "\My Doc uments\SuperDuperApp\SuperDuperApp.exe"
path string. You now have a valid shortcut file for your application, and just need to place it in
the right location on the PocketPC.

C. Placing the Shortcut file on the PocketPC

Now that you have created the shortcut .lnk file on the PC, all you need to do to make that
shortcut visible on the PocketPC is to copy it to the correct folder on the PPC. The correct folder
to place the shortcut is the "\Windows\Start Menu\Programs" folder. This is the folder that is
displayed when the user taps on Start | Programs on the PPC. Simply copy the .lnk file into the
"\Windows\Start Menu\Programs" folder, and the PocketPC will automatically find the icon for
your application based on the path in the .LNK file. It will display your app icon, with the name
of the lnk file. In our example above, the icon shown in the Programs screen would be Super
Duper and it would show the icon contained within the "\My
Documents\SuperDuperApp\SuperDuperApp.exe" file. Tapping on the Super Duper icon will
start the application.

That is all there is to it!

D. A sample CeRDKInst install config file that includes a shortcut

The CeRDKInst utility included with Satellite Forms is used to install a list of files to the
PocketPC. Using the new "bundled runtime engine"
approach that is now available with Satellite Forms 7 using PDB databases, the CeRDKInst tool
can be used to install your application and runtime engine together. You can have CeRDKInst

p151

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

install the shortcut file you created above also, for a complete PocketPC installation solution.

The documentation for the CeRDKInst tool is included in the main Satellite Forms help file, under
the topic Deploying Your Application | Working with the Pocket PC install utility. The sample
below shows a complete install ini file for an application, runtime engine, and shortcut file:

;Super Duper App config file for CeRDKInst
;
;Installer Section
[Installer]
EngWinTitle=Super Duper App Installer
;
;Files0 Section - app files and SF runtime
;installed to \Program Files\SuperDuperApp folder
[Files0]
DevDir=\Program Files\SuperDuperApp
Sync=FALSE
File0=..\PDAFiles\SuperDuperApp.PDA
File1=..\PDAFiles\SuperDuperApp.EXE
File2=..\PDAFiles\ESDAP0100_SDITEMS.PDB
File3=..\PDAFiles\ESDAP0100_SDSITES.PDB
File4=..\PDAFiles\ESDAP0100_SDLOOKUP.PDB
File5=..\PDAFiles\SatForms70.EXE
File6=..\PDAFiles\DvSddi_PPCPDB.DLL
;
;Files1 Section - shortcut file for SuperDuperApp
;installed to \Windows\Start Menu\Programs
[Files1]
DevDir=\Windows\Start Menu\Programs
Sync=FALSE
File0=..\PDAFiles\Super Duper.lnk

Keywords: PocketPC, install, CERDKInst, shortcut, Windows Mobile, setup, installer,
deployment

KB ID: 10045
Updated: 2007-12-03

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p152

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Implement a Quick Find feature
Problem: How To Implement a Quick Find feature

Solution: This article describes a technique for implementing a Quick Find feature in your
application, enabling your users to incrementally search through a large list. As the user enters
characters one by one, the closest matching record wil be located.

You've got a list of 5000 items in your application, sorted by name, and you want to make it
easy for the user to select the right item in a flash. Forcing the user to scroll page by page
through 5000 items won't cut it: this job calls for a Quick Find approach using a binary search!

The Binarysearch function requires that your table be sorted on the field that you are searching.
If it is not sorted correctly, the Binarysearch function will return undefined results.

Add an edit control to the form labeled Find (the control name in this sample is edFind). Add a
short script to the form's AfterChange event that binary searches the table for the Find text,
and positions the form on that matching record, like this:

dim bFound, iFoundRow
bFound = Tables().BinarySearch("Product", True, edFind, iFoundRow)
forms().currentrecord = iFoundRow

Now as the user enters characters, the form will instantly jump down to the matching record,
highlighted in the list! This technique works on the PalmOS & PocketPC platforms.

If an exact match is not found, the Binarysearch function returns the record number in which a
match should be found if it was in the database (the correct sort position).

Want to spice it up a little more? You can add some additional code to show the complete
matched value in the Find edit control, with the characters not yet entered shown as selected,
and the input cursor positioned right after the last entered char.

eg: FI ND: Smi t h

You'll need to do a bit of extra work to keep track of how many chars were entered by the user,
so you know how many to show as selected in the edFind control. Here's an updated
AfterChange script with the additional code.

dim bFound, iFoundRow, iFindLen, iMatchLen

iFindLen = Len(edFind) 'how many chars entered by user

bFound = Tables().BinarySearch("Product", True, edFind, iFoundRow)
forms().currentrecord = iFoundRow

edFind = Tables().Fields("Product") 'show match in edFind
edFind.SetSelection(iFindLen, Len(edFind)) 'highlight non-entered chars and set cursor position

The trick here is that because you highlight the non-entered chars and set the cursor position
after the chars that were entered, the next character that is entered overwrites the highlighted
selection. This enables the iFindLen = Len(edFind) code in the AfterChange event to get the new
length of entered characters, before the edFind field is updated again with the rest of the
matched data.

Tip: You can change the length of time before the AfterChange event is fired (called the

p153

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

AfterChange delay), either on an application wide basis or on an immediate runtime basis. To
change the AfterChange delay (the default delay is 2 seconds) on a project wide basis, go to the
Build | Options menu and modify the OnChange Delay value. To change that value as your
application is running you can use the script function SetDelayToChangeEvent.

Keywords: Find, search, incremental, quick, lookup, binarysearch, binsearch, typeahead

KB ID: 10047
Updated: 2007-02-01

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p154

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Use OnPenDown/OnPenUp Scripts to Detect
Pen Taps on Controls
Problem: How To Use OnPenDown/OnPenUp Scripts to Detect Pen Taps on Controls

Solution: This article describes a technique using a global PenTapInControl script in
conjunction with OnPenDown/OnPenUp form scripts to detect when controls are tapped on, for
use on controls that do not have an OnClick method (such as edit controls, text labels, lookups,
bitmaps, etc).

Let's assume that you want to detect pen taps in a control in a manner consistent with the
standard controls that support OnClick events; that is, a valid "click" is when the user taps the
pen down on the control, and then lifts the pen up while still on the control. Tapping down on a
control, then sliding off the control and lifting the pen when not on the control does not count as
a valid click.

This can be accomplished using a combination of global functions, global variables, and
OnPenDown/OnPenUp scripts on a given form.

First the global vars that we need in order to track pen tap coordinates across multiple scripts:

'pen tracking global vars
Dim gOPDX, gOPDY, gOPUX, gOPUY

[For those curious about the variable naming convention, they are named after Global
OnPenDown X, Global OnPenDown Y, Global OnPenUp X, Global OnPenUp Y.]

Next the OnPenDown script on a form:

'record the pen down but don't track it around the form
'save x/y coords to global vars for use in other scripts
'note these save to the "D" or "Down" global vars
GetPenStatus(gOPDX, gOPDY)

Next the OnPenUp script. This example tracks taps for two controls, Edit1
and Edit2.

'record the pen up position but don't track it around the form
'save x/y coords to global vars for use in other scripts
'note these save to the "U" or "Up" global vars
GetPenStatus(gOPUX, gOPUY)

Dim cX, cY, cW, cH
'test if pen tapped within bounds of Edit1 control
Edit1.GetPosition(cX, cY, cW, cH)
If PenTapInControl(cX, cY, cW, cH) then
 msgbox("You tapped inside Edit1")
 Exit 'leave the script
Endif

'test if pen tapped within bounds of Edit2 control
Edit2.GetPosition(cX, cY, cW, cH)
If PenTapInControl(cX, cY, cW, cH) then
 msgbox("You tapped inside Edit2")
 Exit 'leave the script

p155

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Endif

Okay, so you can see that the OnPenUp event script calls a global function named
PenTapInControl, passing it the coordinates of the control that you want to test the pen taps
for. Remember that we consider it a tap ONLY if the pen taps down on the form and also lifts up
from the form within the bounds of a given control. A user can tap down then slide away and lift
off outside of a control and that is not considered a tap (just like the standard UI behaviour for
controls). That PenTapInControl global function looks like this:

'check supplied coordinates against stored global PenUp and PenDown coords
'return True if pen tapped (down and up) in control or False if not
Function PenTapInControl(cX, cY, cW, cH)
 Dim dDX, dDY, dUX, dUY
 dDX = gOPDX - cX 'pen down x coordinate differential
 dUX = gOPUX - cX 'pen up x coordinate differential
 dDY = gOPDY - cY 'pen down y coordinate differential
 dUY = gOPUY - cY 'pen up y coordinate differential
 'verify that pen differentials lie within width and height of control
 If ((dDX <= cW) and (dDX >= 0) and _
 (dUX <= cW) and (dUX >= 0) and _
 (dDY <= cH) and (dDY >= 0) and _
 (dUY <= cH) and (dUY >= 0)) then
 PenTapInControl = True
 else
 PenTapInControl = False
 Endif
End Function

That should do it. You can then expand it to other controls by adding additional PenTapInControl
tests in the OnPenUp script.

Keywords: PenTapInControl, OnPenDown, OnPenUp, pen, tap, click, global, GetPosition,
GetPenStatus

KB ID: 10059
Updated: 2007-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p156

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Limit Edit Control Input to Numeric Only
Problem: How To Limit Edit Control Input to Numeric Only

Solution: There are times when you would like to limit allowed input into certain controls to
numeric characters only (the digits 0..9, and ".", ",", and "-" characters, as well as the
backspace). While this can be accomplished in several different ways (for example, the
AfterChange event that gets fired when a control changes its value, or the OnValidate event
which fires before the form's current data is saved to the linked table), this example takes the
approach of filtering input chars as they are entered. This can be accomplished using a global
script that can be called from multiple forms, and the OnKey event script on any given form.

In the OnKey event of the form, we can test whether the input is numeric or not. If not, then
we can beep and discard the input. Let's say we only want to perform this numeric input
validation:

dim AKey, VKey, MKey
GetLastKey(AKey, VKey, MKey)

if (AKey > 255) then Exit 'allow virtual keys to be processed by the OS

'if input to edNumeric control then check for numeric input only
if Forms().GetFocus = edNumeric.Index then
 if not IsNumericInput(AKey) then
 Beep(1)
 Fail 'non-numeric entry disabled
 endif
endif

As you can see, the OnKey script calls a global function named IsNumericInput and passes it
the ASCII value of the character that was just received from the keyboard input queue. Let's
create a Global function named IsNumericInput that examines that input char and returns True if
it is a valid numeric char, or False if it is not. The backspace key is handled by the AKey = 8
test, which tests the ASCII code instead of testing the character as is done for the digits and
numeric punctuation:

Function IsNumericInput(AKey)
 dim char
 char = CHR(AKey) 'get the character
 if ((char >= "0") and (char <= "9")) _
 or (char = ".") _
 or (char = ",") _
 or (char = "-") _
 or (AKey = 8) then
 IsNumericInput = true
 else
 IsNumericInput = false
 endif
End Function

That should do it. You can then expand it to other controls and/or forms by adding additional
IsNumericInput tests in the OnPenUp script.

Keywords: IsNumericInput, numeric, char, OnKey, GetLastKey, validate

KB ID: 10060
Updated: 2007-07-11

p157

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p158

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Force Input To ALL CAPS
Problem: How To Force Input To ALL CAPS

Solution: On occasion you may wish to force input in an edit control to ALL CAPS. There are
several different ways to accomplish this, for example using the AfterChange event that gets
fired when a control changes its value, or the OnValidate event which fires before the form's
current data is saved to the linked table. This article presents a method for filtering the
characters as they are inputted via the OnKey event, converting them to ALL CAPS before they
get posted into the edit control.

This can be accomplished using a global function in conjunction with the PasteChars function of
the new SysUtils extension (introduced with Satellite Forms 7.1). Let's start with an
IsUppercaseInput global function that just looks at the input and decides if it is uppercase text
or not. For simplicity, this function treats "a".."z" as Not Uppercase, and everything else as
Uppercase. You could of course extend these routines to handle the international accented chars
too -- the example below is for just for unaccented "a".."z":

Function IsUppercaseInput(AKey)
 'use AKey values directly not characters here because
 'in SF script "a" = "A" when doing string comparison
 if ((AKey >= 97) and (AKey <= 122)) then
 IsUppercaseInput = false
 else
 IsUppercaseInput = true
 endif
End Function

Now, in the form's OnKey event we can check if the input was uppercase and if not we can post
the uppercase version of that key into the keyboard input queue (using PasteChars from the
SysUtils extension), and discard the original lower case input. In this example, we are
performing the IsUppercaseInput filtering on an edit control name edAllCaps only, and leaving
input to other controls unfiltered:

dim AKey, VKey, MKey
GetLastKey(AKey, VKey, MKey)

'if input to edAllCaps control then check for uppercase input only
if Forms().GetFocus = edAllCaps.Index then
 if not IsUppercaseInput(AKey) then
 'input is from lowercase a..z so post uppercase key instead
 'uppercase letters ASCII values are 32 less than lowercase values
 SU_PasteChars(CHR(AKey - 32)) 'post uppercase key to input
 Fail 'cancel the lowercase key
 endif
endif

That should do it. You can expand it to other controls by adding additional IsUppercaseInput
tests in the OnKey script, and you can expand the comparison to accented chars by modifying
the IsUppercaseInput global function.

Keywords: IsUppercaseInput, upper case, OnKey, capitals, GetLastKey

KB ID: 10061
Updated: 2007-07-11

p159

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p160

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Dial a Phone Number Using the LaunchURL
Extension
Problem: How To Dial a Phone Number Using the LaunchURL Extension

Solution: The LaunchURL extension, included with Satellite Forms 7.0 and also available by
download for Satellite Forms 6.x, is designed to enable your application to open a website URL in
the device's default web browser. It can also be used to make phone-enabled devices dial a
phone number, by using a special URL.

The special URL to dial a phone number is tel:nnn-nnn-nnnn where nnn-nnn-nnnn is the
telephone number.

To dial a number, use the LaunchURL function from the LaunchURL extension to launch the tel:
URL, like this:

dim err, URL
URL = "tel:1-800-555-1212"
err = LaunchURL(URL)

On PalmOS Treo smartphones, a dial confirmation dialog will appear, with the phone number
displayed and the button choices Dial, Message, Cancel. If you tap Dial, your application is
closed, the Phone app is launched, and the phone number will be dialed. If you tap Message,
your app will close, and the SMS Messaging app will be launched with the To: phone number
filled in. You can then type in the message and send it via SMS. If you tap Cancel, the dial
confirmation dialog is dismissed, and you remain in the Satellite Forms application.

On PocketPC Phone Edition devices, the Phone application will be launched and the phone
number will be dialed. Your Satellite Forms application will still be running in the background
while the phone application is active.

Keywords: phone, dial, URL, launch, telephone, call, message, LaunchURL

KB ID: 10072
Updated: 2007-06-26

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p161

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Send an Email Message Using the LaunchURL
Extension
Problem: How To Send an Email Message Using the LaunchURL Extension

Solution: The LaunchURL extension, included with Satellite Forms 7.0 and also available by
download for Satellite Forms 6.x, is designed to enable your application to open a website URL in
the device's default web browser. It can also be used to send an email message, by using a
special URL.

The special URL to send an email message is the mailto: URL. The mailto: URL is a defined
internet URL standard, like http:, designed for sending shorter email messages via the web
browser. For complete details on the mailto: URL scheme, use Google to search for the relevant
reference documents and samples.

To send a short email message, use the LaunchURL function from the LaunchURL extension to
launch the mailto: URL, like this:

dim err, URL
URL =

"mailto:user@domain.com?subject=This%20is%20%20subject&body=This%20is%20the%20message%20bod
y."

err = LaunchURL(URL)

On PalmOS Treo smartphones, your SatForms application will close and the the default email
client (usually VersaMail) will appear, with the mail address, subject, and body information filled
out. You can edit the message and then send it.

On PocketPC Phone Edition devices, the default email application (usually Messaging) will be
launched with the address and message information filled out. Your Satellite Forms application
will still be running in the background while the email application is active.

Keywords: email, message, URL, LaunchURL, mail

KB ID: 10073
Updated: 2007-06-26

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p162

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Commit Table Data to Storage Immediately
Problem: How To Commit Table Data to Storage Immediately

Solution: Newer PalmOS devices, and Windows Mobile/PocketPC devices using the PDB
database format, employ a system of in-memory caching of table data for improved
performance. Changes to cached tables are automatically committed, or saved, back to storage
when the application is closed. In order to prevent loss of data due to a system reset before the
application is closed, you can force the cached data to be com mitted immediately on a table by
table basis, either by using the Tables("tablename").CommitData method that is new in Satellite
Forms 7.1, or by using the PalmOS DmSyncDatabase extension or the PocketPC
CommitDatabase extension.

A. Overview

The original PalmOS memory system stored non-built-in applications and data in
battery-powered RAM memory. Everything worked well as long as the PalmOS device had
battery power, but if the batteries died then the contents of RAM (including applications and
data) were lost. A standard reset would not lose any data, because the contents of RAM were
not cleared, leaving apps and data intact.

A few years ago a new PalmOS memory system was introduced in which applications and data
were stored in non-volatile memory, keeping applications and data intact even if the batteries go
dead. The main impetus for this new system, called the Non-Volatile File System (NVFS), was to
enable "on the go" swapping of removable batteries in Palm Treo smartphones, without losing
data such as phone numbers, appointments, and so on. The overall advantages of the NVFS
memory system were readily apparent, and so NVFS was quickly adopted on most other
non-Treo PalmOS 5.x devices as well, becoming the new normal memory system.

While the goals of NVFS were certainly admirable, and in general terms it does work well, the
actual impementation of NVFS has a few holes that make it necessary to consider data protection
strategies in your application. In basic terms, the NVFS system caches database tables that are
open (in use) in regular RAM memory, and then commits (saves) the modified databases back to
non-volatile storage when the database is closed (when the application ends) and when the
power is turned off. This is all performed automatically behind the scenes by the PalmOS. The
problem comes when the device is reset (due to a pin reset or to a system crash): if the cached
databases have not been committed to storage before the reset, then all of the modified data is
lost when the device restarts.

For Windows Mobile/PocketPC devices, the Satellite Forms PDB database format uses a similar
system of caching modified data in memory for enhanced performance. While the applications
databases are open, changes are cached in RAM, and when the application closes the modified
data is committed to storage. This process of committing data to storage is what causes the
delay when a PocketPC PDB application is closed. Under this PDB data caching system, a device
reset/crash can also cause data loss if the data has not been committed to storage before the
reset.

The implication of this data loss on reset behaviour is that in order to ensure your
modified application data is saved to non-volatile storage, your application may need to
periodically force its data to be committed to storage before the application closes.

Starting with Satellite Forms 7.1, a new Tables("tablename").CommitData method is
available to perform this task. At any point in your application you can immediately commit any
specified table to storage by calling the Tables("tablename").CommitData method. For versions
of Satellite Forms prior to 7.1, two extensions are available to provide this capability. The

p163

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

DmSyncDatabase extension for PalmOS provides this capability with the
DmSyncDatabase(Tables("tablename").Index) script method. It is available for download from
the Products & Support | Support Files | Software Updates & Patches section of the Satellite
Forms website, and is also included as a standard extension in SatForms 7.0. The
CommitDatabase extension for PocketPC provides this same capability for the Windows
Mobile/PocketPC platform, using the CommitDatabase(Tables("tablename").Index) script
method. The CommitDatabase extension is also available for download from the Products &
Support | Support Files | Software Updates & Patches section of the Satellite Forms website.

The natural question that comes to many developers' minds is "when or how often should I
commit the table data in my application to prevent data loss?" The simplest answer is that it
depends on the application. Because the actual process of committing a table to storage does
take a little time and is not instantaneous, there is a tradeoff between ensuring complete data
protection versus acceptable application performance. It is up to you as the developer to
determine the optimal blend of data protection and performance for your application, and to use
the CommitData table method accordingly. For example, an inventory scanning application may
want to commit the data table after each new record is scanned, while a sales entry app may
wish to wait until a multi-item order is completed before committing the data. A medical
reference application may not need to commit data at all, and just rely on the automatic
committing of data when the application is closed. There is no single recommended approach to
committing application data for all applications: it is dependent on what your application does
and how important it is to ensure that modified data is saved.

B. Usage

(a) Satellite Forms 7.1 and higher

The recommended approach when using Satellite Forms 7.1 and higher is to call the new
Tables("tablename").CommitData method on your desired table(s). This method works the
same on both the PalmOS and Windows Mobile/PocketPC platforms, enabling you to use the
same script code on both platforms. Here is the method prototype:

CommitData

Tables(TableName).CommitData

Commits (saves) the cached table to storage immediately.

Parameter TableName Name of a table.

Return Value None

p164

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Comments

CommitData is a method of the Table object. Use CommitData to commit
the cached table data to storage immediately.

Table data is cached when it is in use, and committed to storage
automatically when the application closes. If the device is reset or power is
lost before the application is closed, modified data in the cache is not
written to storage, and is therefore lost when the device restarts. The
CommitData method enables you to commit cached table data to storage
immediately, in order to protect against data loss from a device reset.

Note that the CommitData method is NOT affected by active filters. All
records in a table will be committed regardless of whether they are
currently filtered out of view.

Example

'Example of CommitData method.

'Emps is a table.

'Add new employee and commit table to storage.

Tables("Emps").CreateRecord

Tables("Emps").MoveLast

Tables("Emps").Fields("Fname") = "Joe"

Tables("Emps").Fields("Lname") = "User"

Tables("Emps").CommitData

(b) Satellite Forms versions prior to 7.1

For Satellite Forms versions prior to 7.1, the CommitData table method is not available. The
table committing functionality is available through the DmSyncDatabase extension for PalmOS,
and the CommitDatabase extension for PocketPC. In order to seamlessly integrate the table
commit procedure into your pre-7.1 SatForms application for both the PalmOS and PocketPC
platforms, follow this approach which is a combination of using the extension functions and
global scripts. This allows your form level scripts to use the same script code for either/both
platforms, and follows the approach presented in the KnowledgeBase article How To use Global
Functions & Subs to replace extension functions not available on the current target platforms.

 First, add the DmSyncDatabase extension to your PalmOS application target, using the
Manage Extensions toolbar.

 Next, add the CommitDatabase extension to your PocketPC PDB application target, using the
Manage Extensions toolbar.

 In the PalmOS build target, create a new Private (not Shared) Global Sub named
CommitData:

'CommitData global sub for PalmOS uses DmSyncDatabase

'the table index is passed to this function as a string variable

Sub CommitData (tIndex)

 DmSyncDatabase(tIndex)

End Sub

 In the PocketPC build target, also create a new Private (not Shared) Global Sub named
CommitData:

p165

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

'CommitData global sub for PocketPC uses CommitDatabase

'the table index is passed to this function as a string variable

Sub CommitData (tIndex)

 CommitDatabase(tIndex)

End Sub

 In the form-level scripts for either platform, you can commit a specified table to storage by
calling the CommitData global sub like this:

'save our updated table to storage right now

'using the CommitData global sub

CommitData(Tables("tablename").Index)

C. Additional Data Protection Strategies

If you want to add some additional data security to your application, you could copy data tables
to an installed memory card (or in the case of the Palm Tungsten T5, the built in flash memory
area, and in the case of the Palm LifeDrive, the built in hard drive). In that way, if the data files
are lost due to whatever reason, they could be recovered from the memory card backup. There
are many low cost or even free backup utilities available (Google for 'Palm memory card backup'
for some examples), which are user-run utilities. To programmatically handle backups of data in
your app to a memory card without user intervention, you can use the PalmDataPro SFTextFile
extension for PalmOS (http://www.palmdatapro.com/itm00116.htm) or SFTextFile-PPC for
PocketPC (http://www.palmdatapro.com/itm00152.htm).

Keywords: commit, save, write, cache, reset, dmsyncdatabase, commitdatabase, NVFS,
storage, protection

KB ID: 10074
Updated: 2007-09-13

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.palmdatapro.com/itm00116.htm
http://www.palmdatapro.com/itm00152.htm
http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p166

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Make PocketPC PDB Apps Close Faster
Problem: How To Make PocketPC PDB Apps Close Faster

Solution: Satellite Forms Windows Mobile/PocketPC applications that use the PDB database
format (which is highly recommended over the CDB database alternative, see How To use
PalmDB (PDB) tables in a PocketPC application) can experience delays when closing the
application. This delay occurs when cached table data is committed back to storage as the
application closes. There are some techniques you can employ to speed up the application
closing process, explained below.

Overview: The key to speeding up the closing of PocketPC PDB applications is understanding
how Satellite Forms uses Table Flags. Table Flags are attributes that you can assign to
individual tables in your application that cause the SatForms runtime engine to treat the table in
a special manner. The Table Flag is a numeric value that determines special behaviours of that
table when it is in use on the PDA by the Satellite Forms runtime engine. For example, one of
the possible table flag values indicates that the table is Read-Only, and the runtime engine
therefore prevents any modifications/additions/deletions to the data in the table.

The Table Flags for each table are initially defined in the Table Editor (Layout tab) in App
Designer, where you can set the available flags using checkboxes. The NoAutoCommit flag
option is new to the Table Editor in App Designer in SatForms 7.1, but support was added for this
flag to the runtime engine and SFConvertPDB utility starting with SF Patch 70003. When you
compile your application, the table flag values corresponding to the selected options will be
saved into the PDB table header. Additionally, flags can be specified using the -CreateFlag
parameter of the SFConvertPDB utility. Each table can have different flags as they are assigned
on a per-table basis. The current supported table flags include:

Flag value Flag name Flag description

0 No table flags No special table behaviours - regular read/write table.
The PocketPC runtime engine will automatically commit
the table to storage when the app closes, regardless of
whether any records were modified/created/deleted.
This is the standard behaviour.

1 Backup The table will be backed up at Hotsync (PalmOS
behaviour only). This flag currently has no effect on the
PocketPC platform.

2 Read-Only The runtime engine will prohibit table record
modifications/additions/deletions and will only permit
read access to the table data. The PocketPC runtime
engine will not commit read-only tables to storage on
exit, and thus will close read-only tables more quickly
than standard read/write tables.

4 Autoname The desktop table name will automatically match the
logical table name (this is the 'Link table name to
filename' option in the App Designer table editor). This
table flag is used by App Designer only and has no effect
on the PDA.

p167

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

64 NoAutoCommit This is like a cross between a standard read/write table
and a read-only table. The runtime engine treats this as
a standard read/write table while the application is
running, allowing you to modify/create/delete records.
However, the table will not be automatically committed
to storage when the app closes, thus any changes will
not be saved. To save the data before closing, you must
explicitly commit the table data to storage. This flag is
implemented on the PocketPC platform only, and is
ignored on the PalmOS platform (the PalmOS runtime
treats it is a standard read/write table). The
NoAutoCommit flag permits tables to c lose more quickly
by not automatically committing them to storage when
the app closes, like a read-only table.

Some table flag values can be combined, while others must be exclusive. For example, the
Backup, Read-Only, and Autoname flags can all be present on a given table, and you would
combine those flags by adding their flag values together. The Read-Only and NoAutoCommit
flags must be exclusive to each other: do not combine them together.

Implementation: With an understanding of how the SatForms PocketPC runtime engine uses
table flags, strategies to speed up the closing of applications become readily apparent.

1. The first and easiest approach is to make sure that any tables in your application that will
never be modified are marked with the Read-Only table flag. The runtime engine will not
commit read-only tables to storage when the app closes, because they logically should not
have been modified in any way, thus read-only tables will close instantly. This is an
especially important consideration for large information reference type applications (for
example a medical reference database), because the length of time it takes to commit a table
is directly proportional to the overall size of the table. It is also something to consider for
smaller tables in non-reference type applications too, for example a list of non-modifiable
items used for a droplist. Set the Read Only checkbox for the table in App Designer, and be
sure to also set the proper -CreateFlag value if you use the SFConvertPDB utility in your
desktop sync application.

2. The second approach is a bit more complex, and that is to use the NoAutoCommit table flag
on tables that you may or may not make modifications to while using the application. A
NoAutoCommit table may be modified by your application just like a regular read/write table,
but the runtime engine will not save those modifications when your application closes. If you
want to save the changes in that NoAutoCommit table, you MUST commit the data using the
Tables("tablename").CommitData method prior to the application closing. Since the runtime
engine will not automatically commit the NoAutoCommit table data to storage when it is
closed, it closes instantly just like a Read-Only table. NoAutoCommit tables therefore give
developers an option that can reduce the delay when closing an app, in addition to the option
of using Read-Only tables. For example, if your app includes 10 NoAutoCommit tables, but
you have only updated 2 of those tables when your application goes to close, you can commit
those changes on the two tables by calling the CommitData method, and leave the other 8
tables to close without being committed. Your application would then close more quickly
than if all 10 tables were committed to storage on close. The added flexibility of using
NoAutoCommit tables does come with added responsibility: you must explicitly handle the
task of committing your modified data tables to storage if you want to preserve the changes.

Keywords: commit, table, database, PDB, speed, close, commitdata, SFConvertPDB, flag,
createflag, read-only, noautocommit

p168

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

KB ID: 10075
Updated: 2007-09-13

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p169

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How to Beam Files via IR or Bluetooth on PocketPC
Problem: How to Beam Files via IR or Bluetooth on PocketPC

Solution: It is possible to beam files via infrared or Bluetooth from a PocketPC handheld in
your Satellite Forms application, by calling the standard PocketPC beam utility and passing it the
path and name of the file you want to send.

To achieve this, use the SysUtils extension that was introduced with Satellite Forms 7.1, which
includes an SU_LaunchApp function:

USAGE: result = SU_LaunchApp(strPath, strParam)

The system beam utility is "\Windows\beam.exe" for PocketPC 2003 and higher devices. For
PocketPC 2002 devices, it is "\Windows\irsquirt.exe" (supporting infrared only). This is the value
you need to pass in the strPath parameter for the SU_LaunchApp function.

The strParam parameter should contain the full path and name of the file you want to beam, for
example "\My Documents\Work Order
Sample\ESMS20000_WRKSITES.PDB".

An example to beam the WrkSites table would go like this:

dim strBeamUtilPath, strPDBPathname, result

strBeamUtilPath = "\Windows\beam.exe"

strPDBPathname = GetAppPath & "ESMS20000_WRKSITES.PDB"

result = SU_LaunchApp(strBeamUtilPath, strPDBPathname)

When this function is run, the standard Beam utility progress screen will appear overtop of your
application, listing the file to send and the devices found within range. The user must tap on the
device they wish to send to from the list presented. When the transfer is done, the user needs
to tap on the OK button in the upper right of the screen and that will close the Beam utility and
return them to your application.

You can beam files to any accepting devices, including other PocketPC PDAs, PCs, PalmOS PDAs,
mobile phones, etc.

Because Satellite Forms 7.x uses the same Palm Database PDB for application tables on both the
PalmOS and PocketPC platforms, you can beam a PDB from a PocketPC to a PalmOS device and
use it directly without any need for conversion.

When receiving a beamed file on a PocketPC device, files are placed into the \My Documents
folder by default. If you need to have that file in a different folder on the PocketPC (for example
your application folder), you'll need to devise a method to do that. [The PalmDataPro.com
SFTextFile-PPC extension (http://www.palmdatapro.com/itm00152.htm) does provide the
capability to copy files programmatically.]

Note that this method is not applicable to the Windows CE OS, which does not have a standard
beam utility like the Windows Mobile/PocketPC OS does.

Keywords: Beam, Send, Bluetooth, IR, Infrared

KB ID: 10084
Updated: 2008-05-16

p170

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p171

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Sync Satellite Forms Data to a Linux Server
With jSyncManager
Problem: How To Sync Satellite Forms Data to a Linux Server With jSyncManager

Solution: An open source Java based server sync solution called jSyncManager (
http://www.jsyncmanager.org) is available for Linux and other Java-capable environments.
Using the SatelliteForms contrib library written by Michael Schwarz of Technodane Software &
Systems, this solution can be used to sync Satellite Forms data on Palm devices. This article by
Michael Schwarz describes this solution.

Using the SatelliteForms contrib library

Michael Schwarz
TechnoDane Software & Systems, LLC
http://www.technodane.com

1. Introduction

I wrote a Java library to support reading and writing SatelliteForms data using an open source
Java-based Palm sync server called jSyncManager. jSyncManager is a full platform for syncing
PalmOS devices. It supports serial, USB, and network syncing. It has a single user GUI mode and
a multi-user server mode. This document doesn’t attempt to explain jSyncManager. Read other
documentation and support information in the jSyncManager project for that. I will say that the
way I set things up was to unpack the jSyncManager source code and I just added my conduit
code to it. A conduit has to be in the org.jSyncManager.Conduit package and has to extend
AbstractConduit. One thing that threw me at first was that you have to use javax.swing even if
you are running in "server" mode only because AbstractConduit requires you to write a method
called "constructConfigPanel" (to support the GUI mode) that returns a JPanel. Mine just returns
a null and it works both for the GUI and Server mode.

This library was written to support a specific client. We built a field force automation application
for PalmOS using SatelliteForms 6.1.1 and we had over 100 users using network sync through
jSyncManager using this library.

The library has been released under the LGPL and included in the "contrib" folder of the
jSyncManager project. It was written by Michael A. Schwarz and is "owned" by his company,
TechnoDane Software & Systems, LLC.

We are happy to provide assitance in using the library. Contact Michael at mschwarz at
technodane.com. Answering specific questions we’re happy to do for free. We also offer design
and development services at competitive rates. We can also offer fixed bids.

2. Getting Started

Every class in the library has javadoc comments. The two most important classes for most users
are SFTable and SFColumn. The library is found in the "contrib" directory of the jSyncManager
source tree. As of this writing, the library can only be obtained via CVS.

The first thing you need to know is how SatelliteForms data tables end up being named. You will
need an official creator ID for your application. The data tables end up with the name
Eccccvvvv_SFTableName, where "cccc" is the four character creator ID that you register with
Palmsoft. "vvvv" is a table version number (which IIRC is set in SatelliteForms to allow you to
differentiate between versions of your tables. I never took advantage of this feature, we always
upgraded everyone at the same time).

http://www.jsyncmanager.org
http://www.technodane.com

p172

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Execution of your conduit starts at the startSync method. It is called with an instance of
ConduitHandler, which is the class through which you drive the sync session. For example, we
call the getUserInfo method on the ConduitHandler object to obtain the sync name of the
handheld being synced. This was how we identified the user. Be aware that when working in
server mode, several invocations of your conduit may be running simultaneously. We chose to
create an inner class called "Session" to hold separate data structures for each active user. See
jSyncManager project code and documentation for more details on concurrency issues.

Use the openDatabase method on the ConduitHandler to open the table you want to sync. This
returns a handle you use for subsequent operations. Now we get to the meat of using the
SatelliteForms library.

3. The SFTable class

PalmOS databases have a "App Block," which is a "one per database" structure. SatelliteForms
uses this to store the structure of the data that is in the actual records of the database (in a
traditional PalmOS application, records a just blocks of bytes that are usually mapped into a C
struct). In an SF application, this AppBlock describes the names, types, and sizes of columns.

This is where our library starts to help you. You do not need to parse this structure, or encode
and decode records yourself. Use the ConduitHandler getApplicationBlock method to obtain this
AppBlock record. You then pass the resulting structure to the constructor for our SFTable class. It
might look like this:

byte mode = DLPDatabase.READ_MODE;

mode |= DLPDatabase.WRITE_MODE;

mode |= DLPDatabase.SHOW_SECRET;

try {

dbHandle = conduitHandler.openDatabase("EAIac0000_CUSTOMERS", mode);

} catch (Exception e) {

// Intercept exception for tracing, then "re-throw" for

// normal error handling.

e.printStackTrace(System.out);

DBUtility.logEvent(s.db, s.syncID, "ABOVE THROWN for DB [" + databases[x] + "]");

throw e;

}

int count = conduitHandler.getOpenDatabaseInfo(dbHandle);

conduitHandler.postToLog("Database claims " + count + " records.");

DLPBlock appBlock = conduitHandler.getApplicationBlock(dbHandle);

SFTable sft = new SFTable(appBlock);

Now that you have the SFTable instance, you can use it to get and set data from rows of that
table. There are a couple of common ways to examine records from the handheld. One is to
interate over all of them. The other is to look only at those marked "dirty," which means they
were either created or modified on the handheld since the last sync.

If the table is always very small, interating all of them may make sense. But it is usually much
more efficient to examine only the dirty records. Here’s how you do that:

try {

DLPRecord dlpRec = cHdlr.readNextModifiedRecord(dbHandle);

p173

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

cols = sft.getColumns(dlpRec);

SFColumn custname = (SFColumn) cols.get("CUSTNAME");

SFColumn custaddr = (SFColumn) cols.get("CUSTADDR");

SFColumn custcity = (SFColumn) cols.get("CUSTCITY");

SFColumn custstate = (SFColumn) cols.get("CUSTSTATE");

SFColumn custzip = (SFColumn) cols.get("CUSTZIP");

cHdlr.deleteRecord(dbHandle, (byte) 0, dlpRec.getRecordID());

} catch (NotConnectedException nce) {

throw new OurConduitException(nce);

}

Note that everything is cast to SFColumn. This is the abstract base class of all the SatelliteForms
datatypes. At this level, everything is a String. You call the SFColumn methods getValue or
setValue to read and write the data.

Details to keep in mind

 Think of SFTable as a buffer. Getting and setting values doesn’t have any real effect until you
actually put something in it from a DLPRecord or get something out of it as a DLPRecord.

 Another thing to keep in mind. The getValue method is always going to return the value it
was given by the getColumns(DLPRecord) method. In other words, calling setValue doesn’t
change what will be returned by getValue. The setValue method only affects what you get out
of the SFTable.getDataRecord method. This was driven by the requirements of the application
for which this library was developed.

 You can also call setValue on SFTable. There you provide the key and the value. Once you
have set values in a column or columns, your can construct a DLPRecord that is ready to be
written to the handheld with the SFTable.getDataRecord method.

4. Conclusion

This is a fairly light treatment of the jSyncManager SatelliteForms library. We hope to improve
the documentation with your help. However, be aware that we do have Javadoc comments on
our source code which we always try to improve. And the code itself is, of course, the most
accurate documentation you could want. Contact us with your comments and questions. We
would love to see other people get use out of this library.

Keywords: jSyncManager, Java, Linux, Unix, open source, Technodane, Michael Schwarz

KB ID: 10085
Updated: 2008-05-16

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p174

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Use the MSR Attachment with Janam XP
Scanners in Satellite Forms
Problem: How To Use the MSR Attachment with Janam XP Scanners in Satellite Forms

Solution: A Magnetic Stripe Reader (MSR) attachment is available for the Janam
XP20/XP30 PalmOS barcode scanners. Use the following instructions to utilize the Janam MSR
attacment within your Satellite Forms applications.

1. The Janam MSR attachment is a serial port device, and you communicate with the MSR via
the serial port. The simplest way to utilize the Janam MSR in Satellite Forms is to use the
Serial Bar Code control (also known as the Bar Code Reader control). This control is not
the same as the Symbol Integrated Scanner control used to control the barcode scanner
on Janam and Symbiol PalmOS scanners, but does present similar options and events. Using
the Bar Code Reader control to manage the MSR attachment, a "scan" event is fired when the
MSR reads a card, providing you easy access to the swiped card data. You can test this with
the sample project named "BarCode" (in the \Satellite Forms 7\Samples\Projects\Serial
BarCode folder).

2. An alternative to using the Bar Code Reader extension would be to read the serial port data
directly using the SerialPort extension. The Janam MSR is a transmit-only device that
communicates with the handheld on Port 0 at 9600bps N-8-1.

3. In order for the MSR to work, it must be powered by the Janam scanner. The 5V Power Out
feature on the scanner must be enabled in order to power the MSR. There are two ways that
you can achieve this:

o In the Palm Prefs > Settings panel, set External 5V Power to "Always On". You
should notice the green light on the MSR blink about once per second when you do
this, indicating that the reader is powered up and ready to read a card.

OR

o Starting with Satellite Forms 7.2, a new JanamUtils extension is included that
provides access to manage some of the Janam-specific hardware features like keypad
backlight, LEDs, Bluetooth power, and the 5V Power Out setting. Using the
JXP_5VPowerOut function, you can toggle the 5V Power Out setting on or off from
within your application. Therefore, you can extend battery life by enabling the power
to the MSR only when you need it, and by turning off the 5V Power Out when it is not
needed.

Keywords: MSR, Janam, XP, card, Magnetic Stripe Reader, barcode, Bar Code Reader, serial,
5V Power Out

KB ID: 10086
Updated: 2008-05-16

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p175

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Insert New Records Into a Sorted Table
Problem: How To Insert New Records Into a Sorted Table

Solution: For optimal performance when working with tables that have large numbers of
records (for example a table of 10000 barcoded inventory items), it is advantageous to keep the
table records in sorted order, so that the Tables().BinarySearch function can be used to locate a
specific record quickly. If you create a new record in that table, a standard approach is to then
re-sort the table using Tables().QuickSort so that the new record is placed into the correct sorted
position, once again enabling the use of the BinarySearch function to locate records quickly. The
QuickSort function takes more and more time as the number of records increases. This article
describes an alternate approach to keep your table sorted when adding new records without
requiring a QuickSort, thereby yielding even better performance.

The general approach for this method is to (1) find where the new record should go into the
sorted table first, (2) create the new record at the end of the table, then (3) move that new
record into the correct sorted position.

How do we easily determine where the new record should go in the sorted table? Simple: the
BinarySearch function will tell us! The BinarySearch function returns True or False to indicate
whether a match was found. If a match is found, the RowNum parameter will be set to the row
number where the match was found, but if a match is not found, then RowNum will be set to the
row number where a match *should* be found if there was one! This is the correct sorted
position for that item if it is added to the table. That is where the item would go if it was added
to the table and then a QuickSort was called. We can take advantage of that information to put
a new record into the right location without needing to sort the table again.

Let's use a simple example where you are taking inventory by scanning barcodes of items on a
shelf. If that item already exists in the database, then scanning it will increment the quantity by
one. If that item is not located in the database, then a new record is created and the quantity is
set to 1. A real inventory application might be a little more complex, but this will do for the
illustration of the concept.

We want the best performance when taking inventory, so we'll keep our item database sorted on
the barcode number, allowing us to use the fast BinarySearch to locate scanned items in the
table. So, we scan in the item barcode, then call the update/create script code in our barcode
handler event, like this:

'search for the matching item (in strBarcode variable) in our database (ItemCode field in tItems table)

'BinarySearch on sorted table yields best search performance

dim bFound, RowNum

bFound = Tables("tItems").BinarySearch("ItemCode", true, strBarcode, RowNum)

if bFound = True then

'position to the matching row in table

Tables("tItems").Position = RowNum

'increment item quantity (ItemQty field)

Tables("tItems").Fields("ItemQty") = Tables("tItems").Fields("ItemQty") + 1

'play loud boop-beep audible confirmation tone

Tone(1500, 75, 64)

Tone(2500, 75, 64)

else

'create new item record and set Qty to 1

Tables("tItems").CreateRecord

Tables("tItems").MoveLast

Tables("tItems").Fields("ItemCode") = strBarcode

Tables("tItems").Fields("ItemQty") = 1

p176

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

'move new record into correct sorted position without needing to QuickSort!

Tables("tItems").MoveRecord(RowNum, Tables("tItems").Position)

'play loud boop-bee-bee-beep audible confirmation tone

Tone(1500, 75, 64)

Tone(2500, 50, 64)

Tone(2500, 50, 64)

Tone(2500, 75, 64)

endif

Since you've either updated an existing item quantity or added a new item and placed it into the
right sorted position, there is no need to sort the table again, and you can quickly get on with
the job of scanning the next item.

Keywords: QuickSort, sort, BinarySearch, search, find, locate, speed, performance,
MoveRecord, inventory

KB ID: 10087
Updated: 2008-06-26

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p177

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Use Google Maps for Windows Mobile from
your Satellite Forms application
Problem: How To Use Google Maps for Windows Mobile from your Satellite Forms
application

Solution: This article describes how to have your Satellite Forms application for Windows
Mobile launch Google Maps with a specific destination (address or landmark or GPS lat/lon
position), business search, or route request!

This method lets you show the desired location in Google Maps Mobile for WM (let's call it GM for
short), and be able to have live interaction to move around, zoom, etc., just as if you had started
GM manually. Your app stays running in the background, so when you close GM, your app
returns to the foreground.

The techniques described here are demonstrated in the sample project GoogleMaps, in the
PocketPC target, included with Satellite Forms 8. That sample also demonstrates the GoogleMaps
extension for Palm OS, which provides similar features.

The key to using GM from your Satellite Forms Windows Mobile app is to launch GM with a
specially formatted commandline that tells it to show a location, search for a business, or plot a
route.

1. Launch GM using the SU_LaunchApp function in the SysUtils extension, providing the full path
to the GoogleMaps.exe program in the strPath parameter, normally: \Program
Files\GoogleMaps\GoogleMaps.exe

2. Pass the special commandline parameters for the location, business search, or route in the
strParam parameter. The parameter string you pass should take this form:

Maps Usage Type Parameter Format Example

Location -URL "?action=locn&a=
[location]"

-URL "?action=locn&a=1 Microsoft Way Redmond WA"

Business Search -URL
"?action=busi&q=
[search]"

-URL "?action=busi&q=pizza near wall st new york ny"

Route Request -URL
"?action=rout&start=
[place]
&end=[place]"

-URL "?action=rout&start=Vancouver

BC&end=@latlon:50.34,-112.23"

View mode
[optional]

&view=[mapv|satv] &view=mapv for map view mode, &view=satv for
satellite view mode

The parameter string includes several parts.

A. To show a Location, use these guidelines:

?action=locn

 action=locn means the action is to show a Location, with the location to follow next:

&a=1 Microsoft Way Redmond WA

p178

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

 the "a" means "address" and the address in this example is 1 Microsoft Way Redmond WA

 the address can be a street address or city or even a landmark (eg. Statue of Liberty)

 the address can also be a GPS latitude/longitude, specified in decimal degrees format with a
prefix of @latlon: for example a=@latlon:50.34,-112.23

 the address can also be a special string "@GPS" which means current GPS coordinates

 an optional View mode can be specified where you can choose the map view or satellite view

&view=mapv specifies map view

&view=satv specifies satellite view

 example sat view param string is "?action=locn&view=satv&a=Vancouver BC"

B. To search Google Maps for businesses, use these guidelines:

?action=busi

 action=busi means the action is to search for businesses, with the location and search term
to follow next:

&q=pizza near wall st new york ny

 the "q" means "query" and the search query in this example is pizza near wall st new york ny

 use a natural language search query that combines something to search for in or near
somewhere

 as with the Location action, search queries can be specified using a street/city address,
landmark, GPS lat/lon coordinates using the @latlon: prefix, or the special "@GPS" keyword
which means current GPS coordinates

C. To show a Route between two points, use these guidelines:

?action=rout

 action=rout means the action is to show us a Route instead of a location, with the start & end
points to follow next:

&start=Vancouver BC&end=Whistler BC

 use "start=" and "end=" to specify the beginning and ending locations for the route

 as with the Location action, Start and End addresses can be specified as a street/city
address, landmark, GPS lat/lon coordinates using the @latlon: prefix, or the special "@GPS"
keyword which means current GPS coordinates

p179

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

 example route combining address and GPS location is "?action=rout&start=Vancouver
BC&end=@latlon:50.34,-112.23"

 example route combining address and curent GPS location is
"?action=rout&start=Chicago&end=@GPS"

D. General tips:

 remember to begin and end the para string with a double quote char to make sure any
spaces in the params are handled properly

 if you are building the strparam string, you might want to use chr(34) to put the quote chars
into the string, like this:

dim strParam

strParam "-URL " &chr(34) &"?action=locn&a=Vancouver BC" &chr(34)

 to use this solution, you must of course also install Google Maps for Windows Mobile on the
handheld, which you can obtain from http://google.com/gmm

 you can query the registry using SU_RegReadKey to find the location of the GM exe file,
rather than hardcoding, in this reg key: HKLM\Software\Google\GoogleMaps\InstallPath

Keywords: Google Maps, map, satellite, route, directions, search, business

KB ID: 10088
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://google.com/gmm
http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p180

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Use a Specific Connection using
ConnectionMgr
Problem: How To Use a Specific Connection using ConnectionMgr

Solution: An improvement to the ConnectionMgr extension for Windows Mobile allows you
to find the available connections on a device, and select which connection to use, instead of just
taking the default as selected by the system.

The ConnectionMgr extension for Windows Mobile is used to request that the system initiates a
network connection, so that a network resource can be used. Sometimes, on devices with
multiple types of connections available, you may wish to specify which connection to use, instead
of accepting the default connection selected by the system. The new CM_GetConnectionName
and CM_ConnectByIndex functions provide this capability.

In order to choose a specific connection, you first need to find out what the available connections
are to choose from. To do this, use the CM_GetConnectionName function in a loop until you have
found all of the connections. The system stores available connections by name, with a unique
index number for each one. Start by requesting the name of the connection with an index of 0,
store that name, then increment the index and retrieve the next name, until you have retrieved
all available connections. Once you have the list of connections and their indexes, you can
initiate the connection using the index of the connection you want to use.

For example (lists all connections in a paragraph control named edConnName):

dim connidx, connname, done

connidx = 0

done = false

while not done

connname = CM_GetConnectionName(connidx)

if connname = "" then

done = true

else

edConnName = edConnName &connidx &" - " &connname &chr(10)

connidx = connidx + 1

endif

wend

Sample output might look like this:

0 - My Work Network
1 - My ISP
2 - Work
3 - Secure WAP Network
4 - The WAP Network
5 - The Internet

Now, once you have the connection index of the connection you want to use, you can initiate
that connection usng CM_ConnectByIndex, like this:

'connect using The Internet

result = CM_ConnectByIndex(5)

Here's a more complete sample that will search all connections for one named "The Internet" and
either connect with it or display an error message:

p181

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

'connect to "The Internet"

dim connidx, connname, done

connidx = 0

done = false

while not done

connname = CM_GetConnectionName(connidx)

if connname = "" then Exit While

if connname = "The Internet" then

done = true

Exit While

else

connidx = connidx + 1

endif

wend

if done then

result = CM_ConnectByIndex(connidx)

else

MsgBox("The Internet connection not found.")

endif

Keywords: connection, dialup, WLAN, WWAN, internet

KB ID: 10089
Updated: 2010-06-21

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p182

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Enable Newer 2D Barcode Types on Janam
Scanners
Problem: How To Enable Newer 2D Barcode Types on Janam Scanners

Solution: The Janam XP (Palm OS) and XM (Microsoft Windows Mobile OS) barcode
scanners are designed to be compatible with scanning software written to the Symbol scanner
APIs, enabling easy hardware migration. Thus, in Satellite Forms, the Symbol Integrated
Scanner control can be used to manage barcode scanning on both Symbol and Janam scanners.

The Janam XP & XM scanners are also capable of scanning several newer 2D barcode types that
were not included in the design of the Symbol Integrated Scanner control, including Data Matrix,
Aztec Code, QR Code, and Maxicode. This article explains how to enable or disable those newer
barcodes types in your scanning application.

NOTE: The capability to decode 2D barcodes on Janam scanners is a paid option, and is unlocked
with a password that must be entered into the device. In order to decode 2D barcodes as
described in this article, you need to unlock the 2D barcode capability on the Janam scanner
first. Consult http://www.janam.com for more details on the 2D barcode unlock feature if
needed.

Enabling 2D Barcodes with the SetBarExtra method

The Symbol Integrated Scanner control included with Satellite Forms version 8 has a new
SetBarExtra method to let you enable or disable these newer 2D barcode types. The prototype
for SetBarExtra looks like this:

result = Barcode1.SetBarExtra(bartype, enabled)

Where bartype is a barcode type number indicating the barcode type to enable or disable, and
enabled is true to enable or false to disable.

So, now you are thinking that all you need to have is the bartype number for the symbology you
want to enable, and you are all set. That is true, however, there is a catch: the barcode scanner
manufacturers unfortunately decided to use different bartype codes on Palm OS powered
scanners than on the Windows Mobile scanners. So, the bartype you need will differ depending
on which OS platform your app is running on.

Here is the list of bartypes you can enable or disable with SetBarExtra.

Table of Barcode Types and Type Numbers for SetBarExtra

Barcode Type Name
Bartype Number

for Palm OS
(Janam XP)

Bartype Number
for Windows

Mobile (Janam
XM)

* Enable/Disable ALL Barcode Types * 255 N/A

CODE39 0 55

UPCA 1 50

UPCE0 2 48

EAN13 3 53

EAN8 4 52

http://www.janam.com

p183

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

D2OF5 5 56

I2OF5 6 57

CODABAR 7 54

CODE128 8 60

CODE93 9 59

MSI_PLESSEY 11 51

UPCE1 12 49

TRIOPTIC39 13 66

UCC_EAN128 14 N/A

BOOKLAND 83 N/A

ISBT128 84 N/A

COUPON 85 N/A

Code32 86 70

AZTEC 192 34

CODE11 193 58

CODE49 194 36

COMPOSITE 195 86 or 87

DATAMAXTRIX 196 73

MAXICODE 197 72

MICROPDF 198 69

OCR 199 37

PDF417 200 64

POSTNET 201 97

QR 202 74

RSS 203 76

BPO 204 33

CANPOST 205 103

AUSPOST 206 101

IATA25 207 62

CODABLOCK 208 38

JAPOST 209 100

PLANET 210 98

DUTCHPOST 211 102

TLCODE39 212 88

MATRIX25 213 104

CHINAPOST 214 40

KOREAPOST 215 41

TELEPEN 216 42

CODE16K 217 43

POSICODE 218 44

p184

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

USPS4CB 219 45

IDTAG 220 46

RSS_LIM 221 77

RSS_EXP 222 78

MSI 160 51

Plessey 161 39

WEBCODE N/A 84

CUECODE N/A 85

MACROPDF N/A 71

STRT25 N/A 105

MESA N/A 35

Keywords: barcode, Janam, bartype, Symbol, 2D, scanner

KB ID: 10090
Updated: 2010-06-22

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p185

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Change The CreatorID of a Palm Extension
PRC To Match Your App
Problem: How To Change The CreatorID of a Palm Extension PRC To Match Your App

Solution: The Palm File Util tool included with Satellite Forms can be used to change the
creatorID of an extension PRC file. If you use the new Integrated Runtime Engine feature of
Satellite Forms 8, the runtime engine is changed to use your application creatorID. As a result,
extension PRC files may appear on the Palm Info/Delete list, instead of being hidden by the
runtime engine. To prevent this, you can change the creatorID of the extension PRC files to
match your application, resulting in them being hidden on the Palm Info/Delete list.

When you use the integrated runtime engine feature in Satellite Forms 8, the extension PRC files
used by your application are copied into the target's AppPkg folder, for easier deployment. Using
the Palm File Util, you can change the creatorID of these extension PRC files in your AppPkg
folder, without affecting the original extension PRC files in the \Satellite Forms 8\Extensions
folder.

Here are the steps required.

1. To begin, launch the Palm File Util from the Windows Start menu on your development PC,
via Start > Programs > Satellite Forms 8 > Palm File Util. You should see the Palm File Util
dialog box like this:

2. Next, click on the [...] button to browse for files. Locate the AppPkg target folder for your
application, which should have copies of the extensions PRC files there from the build

p186

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

process. The browse window will look like this:

3. Select the first extension PRC file that you want to modify, in this example it is the
SFE_Symbol_Control.PRC file. When you click on Open, the Filename, Identity, and
Attributes information will be shown in the Palm File Util screen:

p187

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

4. Now, change the Creator ID value to match (case sensitive) your application. You can find
the creatorID from the Project Properties screen in MobileApp Designer. In this example, the
creatorID of our application is Qscn, so we'll set that value like this:

p188

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

5. There is no need to change any other values. Now, finally, click on the Save button to save
the changes to the PRC file.

6. Repeat steps 2..5 for all remaining extension PRC files that you wish to modify.

That's it! Now those extension PRC files will remain hidden on the Palm Info/Delete lists.

Keywords: Palm, PRC, extension, info, delete, hidden, Palm File Util, creatorID

KB ID: 10091
Updated: 2010-06-29

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p189

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

QuickStart Guides
Barcode Scanning on Janam XP PalmOS Scanners
QuickStart Guide to: Barcode Scanning on Janam XP PalmOS Scanners

The Janam XP20 and XP30 scanners from Janam Technologies are rugged PalmOS handhelds
with integrated barcode scanning capability. This QuickStart Guide shows you how to add Janam
XP barcode scanning support to your Satellite Forms application, quickly and easily.

This QuickStart Guide contains plenty of screenshots to guide you through the process step by
step, but don't let the length of this article scare you: the entire process of building the barcode
scanning test application for the Janam XP scanners should only take about 15 minutes.

In order to control the Janam barcode scanner, we'll utilize the Symbol Integrated Scanner
control extension that is included with Satellite Forms. Why the Symbol scanner control and not
a Janam scanner control? Well, the Janam engineers brilliantly implemented their barcode
support to be completely compatible with applications written to use the Symbol PalmOS
barcode scanners, and therefore the Satellite Forms Symbol Integrated Scanner control works
perfectly with the Janam scanners! This means that your application can support both the
modern Janam XP scanners as well as the older Symbol SPT PalmOS scanners without any extra
coding.

Okay, let's build a Janam Scan Test sample application step by step:

Step 1. Start a new project in Satellite Forms MobileApp designer, and select the default Palm
platform target. A default form named Form 1 will be created, ready for you to add controls to.
Click in the middle of the form, so that the Control Palette Toolbar becomes active. Let's add a
form Title control, with the title text set to Janam Scan Test. Next add a text control with the
label Barcode: and below that add an edit control named edBarcode that stretches across the
width of the form. Let's add another text control below that labeled Type:, and below that
another edit control named edBarcodeType that also stretches across the form. Your form
should look like this:

http://www.janam.com/

p190

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Step 2. The next step is to add the Symbol Integrated Scanner control extension to our project.

Click on the Manage Extensions toolbar icon which looks like this: A list of available
extensions is displayed. Do not select the one at the top named Bar Code Reader. Scroll down
to the bottom of the list, and select the Symbol Integrated Scanner extension, then click OK:

p191

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Step 3. The Symbol Integrated Scanner extension is a custom SFX control, and not just a plugin
script extension. Although it is a custom control, the control is not actually visible to the end
user: it is only visible in form design view of MobileApp Designer. Because it is a custom control,
an icon is added to the Control Palette toolbar so that you can click on the icon to add the control

to your forms. The SFX icon looks like this and is added to the right end of the Control
Palette toolbar. If you do not see it, there's a good chance that part of the Control Palette
toolbar is simply being cut off because the MobileApp Designer window is not wide enough.
That's easy to solve, we'll just grab the Control palette toolbar "handle" and drag it down to the
next line in the MobileApp Designer desktop. Now we can see all the Control palette toolbar
icons, like this:

Okay good, we can see all the toolbar icons now.

So, click on the SFX custom control toolbar icon so that we can add it to our form. It's possible
you might have more than one custom control on a form and they all share the same toolbar
icon, so a selection box appears to let you choose the custom control you want, like this:

Click OK to select it, and the control then appears on our form as a little barcode symbol.
Remember, this custom control is not visible to the end user. Let's move it out of the way so it
does not overlap other controls, so your form should now look like this:

p192

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

The default name that appears for the scanner control is BarCode1, and we'll leave it at that
default. With the scanner control selected, click the Edit Action button in the control properties,
and select Run Script from the Action Type droplist. This is the OnClick script for the scanner
control, and this event will be fired when a barcode is scanned.

p193

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Step 4. Alright, now we're getting into the thick of things: here is where we decide what to do
when a barcode is scanned. Click on Edit Script and the blank script editor window will open up.
In this script, we are going to use script methods of the scanner control to obtain the barcode
data that was scanned and place it into the edBarcode edit control on the form. Let's display the
barcode type into the edBarcodeType control as well, so we can see what kind of barcode was
scanned. We'll play a high pitched confirmation beep to indicate the successful scan, or a low
frequency buzz if the scan was not successful. Here's the script code to type in (feel free to copy
& paste right from this QuickStart Guide article):

'the OnClick event is fired when a barcode is scanned
'if a good scan is received then put it into the
'edBarcode edit field elsesound a failure tone

if BarCode1.TermRecd then
'put barcode into edit control

 edBarcode = BarCode1.GetScan(0)
'what type of barcode was it
edBarcodeType = BarCode1.GetType
'good read tone
Tone(3800, 150, 64)

else
'bad read tone
Tone(220, 500, 64)

endif

Step 5. Okay, that is the bulk of it, but we need to do a couple more things to make barcode
scanning work. What we need to do is to make sure the device we're running on is really a
Janam (or Symbol) barcode scanner, and if so, enable the scanner to be used. We also need to
disable the scanner when we leave the form. So, in the form AfterOpen event script that gets
fired when the form is opened, enable the scanner like this:

'if device is Symbol or Janam scanner then
'enable scanner in the AfterOpen event and
'disable scanner in the BeforeClose event

if IsSymbolUnit = True then
'enable scanning
BarCode1.EnableScanner

else
'warn user about no scanner
edBarcode = "Barcode scanner not found"

endif

And in the form BeforeClose event, disable the barcode scanner like this:

'if device is Symbol or Janam scanner then
'disable scanner in the BeforeClose event

if IsSymbolUnit = True then
'disable scanning
BarCode1.DisableScanner

endif

That's about it for the barcode scanning stuff. Let's give the application a name, compile it, and
test it out on the handheld.

Step 6. Click on the Edit > Project Properties menu, and give our application the name Janam
Scan Test, like this:

p194

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Click OK, and then save your project. Name it Janam Scan Test.sfa.

Now, compile the application by pressing the F7 hotkey (Rebuild All). If the compiler finds any
typos, fix them, and then Rebuild All again. Next, use the Handheld > Download App & Tables
menu option (or press the F5 hotkey) to send the application to your Janam scanner device.
Connect the Janam XP to the cradle or sync cable, and start the hotsync from the handheld.
Assuming you've already installed the Satellite Forms SDK runtime engine on the Janam, your
application will be sent to the device during the hotsync. Launch the SatForms SDK app on the
handheld, select Janam Scan Test from the list, and you are ready to scan.

Point the scanner at a nearby barcode, press one of the front or side scan buttons on the Janam
XP unit, and you the scanner should read the barcode and play a confirmation beep. Here's a
sample screenshot from the Janam XP30 color screen:

p195

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Congratulations! You've just learned how to scan barcodes on Janam XP scanners with Satellite
Forms!

There are plenty of additional functions in the scanner control to give you even more detailed
control over the scanning process, but you've got the basic scanning function covered just by
applying what you learned in the QuickStart Guide above.

Additional Sample Projects:
\Satellite Forms 7\Samples\Projects\Symbol Control

App\ScannerDemo\SimpleScannerDemo.sfa
\Satellite Forms 7\Samples\Projects\Symbol Control App\Barcode\SymbolBarcode.sfa
\Satellite Forms 7\Samples\Projects\Symbol Control App\Function

Test\SymbolFunctionTest.sfa

Keywords: Janam, XP, XP20, XP30, Symbol, barcode, scanner, quickstart, PalmOS

KB ID: 10077
Updated: 2008-05-27

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p196

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Barcode Scanning on Symbol Windows
Mobile/PocketPC Scanners
QuickStart Guide to: Barcode Scanning on Symbol Windows
Mobile/PocketPC Scanners

Symbol Technologies, now a unit of Motorola, manufactures numerous models of Windows
Mobile/PocketPC rugged handhelds with integrated barcode scanning capability. The Symbol
SPT family of PalmOS powered barcode scanners is no longer manufactured, but there are
thousands of those units in use and the same techniques shown here can also be applied to
those SPT scanners. This QuickStart Guide shows you how to add Symbol Windows
Mobile/PocketPC barcode scanning support to your Satellite Forms application, quickly and
easily.

NOTE: The Symbol Integrated Scanner control demonstrated in this article can also be used to
control barcode scanning on the Janam XM60 Windows CE scanner. Janam Technologies
implemented their barcode scanning system so that it is compatible with the Symbol scanning
functions, and therefore the same Symbol Integrated Scanner control in Satellite Forms can be
used to control scanning on both Symbol scanners and Janam scanners!

This QuickStart Guide contains plenty of screenshots to guide you through the process step by
step, but don't let the length of this article scare you: the entire process of building the barcode
scanning test application for the Symbol PocketPC scanners should only take about 15 minutes.

In order to control the Symbol barcode scanner, we'll utilize the Symbol Integrated Scanner
control extension that is included with Satellite Forms. This control is available for the Symbol
devices on both the Windows Mobile/PocketPC and PalmOS platforms, so you can create cross
platform barcode scanning applications with ease. This guide demonstrates the Windows
Mobile/PocketPC platform only.

Okay, let's build a Symbol Scan Test sample application step by step:

Step 1. Start a new project in Satellite Forms MobileApp designer, and select the PocketPC
platform target. A default form named Form 1 will be created, ready for you to add controls to.
Click in the middle of the form, so that the Control Palette Toolbar becomes active. Let's add a
form Title control, with the title text set to Symbol Scan Test. Next add a text control with the
label Barcode: and below that add an edit control named edBarcode that stretches across the
width of the form. Let's add another text control below that labeled Type:, and below that
another edit control named edBarcodeType that also stretches across the form. Your form
should look like this:

http://www.symbol.com
http://www.janam.com

p197

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Step 2. The next step is to add the Symbol Integrated Scanner control extension to our project.

Click on the Manage Extensions toolbar icon which looks like this: A list of available
extensions is displayed. Do not select the one at the top named Bar Code Reader. Scroll down
to the bottom of the list, and select the Symbol Integrated Scanner extension, then click OK:

Step 3. The Symbol Integrated Scanner extension is a custom SFX control, and not just a plugin
script extension. Although it is a custom control, the control is not actually visible to the end
user: it is only visible in form design view of MobileApp Designer. Because it is a custom control,

p198

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

an icon is added to the Control Palette toolbar so that you can click on the icon to add the control

to your forms. The SFX icon looks like this and is added to the right end of the Control
Palette toolbar. If you do not see it, there's a good chance that part of the Control Palette
toolbar is simply being cut off because the MobileApp Designer window is not wide enough.
That's easy to solve, we'll just grab the Control palette toolbar "handle" and drag it down to the
next line in the MobileApp Designer desktop. Now we can see all the Control palette toolbar
icons, like this:

Okay good, we can see all the toolbar icons now.

So, click on the SFX custom control toolbar icon so that we can add it to our form. It's possible
you might have more than one custom control on a form and they all share the same toolbar
icon, so a selection box appears to let you choose the custom control you want, like this:

Click OK to select it, and the control then appears on our form as a little barcode symbol.
Remember, this custom control is not visible to the end user. Let's move it out of the way so it
does not overlap other controls, so your form should now look like this:

p199

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

The default name that appears for the scanner control is BarCode1, and we'll leave it at that
default. With the scanner control selected, click the Edit Action button in the control properties,
and select Run Script from the Action Type droplist. This is the OnClick script for the scanner
control, and this event will be fired when a barcode is scanned.

Step 4. Alright, now we're getting into the thick of things: here is where we decide what to do
when a barcode is scanned. Click on Edit Script and the blank script editor window will open
up. In this script, we are going to use script methods of the scanner control to obtain the
barcode data that was scanned and place it into the edBarcode edit control on the form. Let's

p200

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

display the barcode type into the edBarcodeType control as well, so we can see what kind of
barcode was scanned. We'll play a high pitched confirmation beep to indicate the successful
scan, or a low frequency buzz if the scan was not successful. Here's the script code to type in
(feel free to copy & paste right from this QuickStart Guide article):

'the OnClick event is fired when a barcode is scanned
'if a good scan is received then put it into the
'edBarcode edit field elsesound a failure tone

if BarCode1.TermRecd then
'put barcode into edit control

 edBarcode = BarCode1.GetScan(0)
'what type of barcode was it
edBarcodeType = BarCode1.GetType
'good read tone
Tone(3800, 150, 64)

else
'bad read tone
Tone(220, 500, 64)

endif

Step 5. Okay, that is the bulk of it, but we need to do a couple more things to make barcode
scanning work. What we need to do is to make sure the device we're running on is really a
Symbol barcode scanner, and if so, enable the scanner to be used. We also need to disable the
scanner when we leave the form. So, in the form AfterOpen event script that gets fired when
the form is opened, enable the scanner like this:

'if device is Symbol barcode scanner then
'enable scanner in the AfterOpen event and
'disable scanner in the BeforeClose event

if IsSymbolUnit = True then
'enable scanning
BarCode1.EnableScanner

else
'warn user about no scanner
edBarcode = "Barcode scanner not found"

endif

And in the form BeforeClose event, disable the barcode scanner like this:

'if device is Symbol barcode scanner then
'disable scanner in the BeforeClose event

if IsSymbolUnit = True then
'disable scanning
BarCode1.DisableScanner

endif

That's about it for the barcode scanning stuff. Let's give the application a name, compile it, and
test it out on the handheld.

Step 6. Click on the Edit > Project Properties menu, and give our application the name Symbol
Scan Test, like this:

p201

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Click OK, and then save your project. Name it Symbol Scan Test.sfa.

Now, compile the application by pressing the F7 hotkey (Rebuild All). If the compiler finds any
typos, fix them, and then Rebuild All again. Next, connect the Symbol scanner to the cradle or
sync cable, and use the Handheld > Download App & Tables menu option (or press the F5
hotkey) to download the application to your Symbol Windows Mobile/PocketPC scanner device.
Launch the SatForms SDK app on the handheld, select Symbol Scan Test from the list, and you
are ready to scan.

Point the scanner at a nearby barcode, press one of the scan buttons on the Symbol unit, and
you the scanner should read the barcode and play a confirmation beep. Here's a sample
screenshot from a Symbol MC50 screen:

p202

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Congratulations! You've just learned how to scan barcodes on the Symbol Windows
Mobile/PocketPC scanners with Satellite Forms!

There are plenty of additional functions in the scanner control to give you even more detailed
control over the scanning process, but you've got the basic scanning function covered just by
applying what you learned in the QuickStart Guide above.

Additional Sample Projects:
\Satellite Forms 7\Samples\Projects\Symbol Control

App\ScannerDemo\SimpleScannerDemo.sfa
\Satellite Forms 7\Samples\Projects\Symbol Control App\Barcode\SymbolBarcode.sfa
\Satellite Forms 7\Samples\Projects\Symbol Control App\Function

Test\SymbolFunctionTest.sfa

Keywords: Symbol, barcode, scanner, quickstart, PocketPC, Windows Mobile, MC50, MC70,
Janam, XM60

KB ID: 10079
Updated: 2008-05-27

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p203

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Barcode Scanning on Aceeca Meazura PalmOS
Scanners
QuickStart Guide to: Barcode Scanning on Aceeca Meazura PalmOS
Scanners

The Aceeca Meazura MEZ1000 RDA (Ruggedized Digital Assistant) from Aceeca International is
an ultra-rugged waterproof PalmOS handheld designed for use in tough environments. It is
available with an optional barcode scanner module, with both CCD and laser scanner options.
This QuickStart Guide shows you how to add Aceeca Meazura barcode scanning support to your
Satellite Forms application, quickly and easily.

This QuickStart Guide contains plenty of screenshots to guide you through the process step by
step, but don't let the length of this article scare you: the entire process of building the barcode
scanning test application for the Aceeca Meazura scanners should only take about 15 minutes.

In order to control the Aceeca barcode scanner, we'll utilize the Aceeca IDVERIFI Bar Code
Scanner plugin extension that is included with Satellite Forms. The extension works with either
the Aceeca BCS1 CCD scanner module, or the BCS2 laser scanner module. We'll demonstrte the
BCS2 laser scanner module here.

Okay, let's build an Aceeca Scan Test sample application step by step:

Step 1. Start a new project in Satellite Forms MobileApp designer, and select the default Palm
platform target. A default form named Form 1 will be created, ready for you to add controls to.
Click in the middle of the form, so that the Control Palette Toolbar becomes active. Let's add a
form Title control, with the title text set to Aceeca Scan Test. Next add a text control with the
label Barcode: and below that add an edit control named edBarcode that stretches across the
width of the form. Let's add a button control named btnScan, labeled SCAN, using the Bold 12
font, and enlarge it to make it easy to tap on with a finger. Leave the button action set to No
Action for now. Your form should look like this:

http://www.aceeca.com

p204

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Step 2. The next step is to add the Aceeca IDVERIFI Bar Code Scanner plugin extension to our

project. Click on the Manage Extensions toolbar icon which looks like this: A list of
available extensions is displayed. Select the Aceeca IDVERIFI Bar Code Scanner at the top of the
list, then click OK:

p205

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Step 3. The Aceeca scanner extension is a plugin script extension, and is not a custom SFX
control. It adds functions to the Satellite Forms script language, but does not appear as a visual
control on the form. We'll use these script functions to enable/disable the scanner, make certain
hardware buttons trigger the scan, and obtain the data from the scanner when it reads a
barcode.

Now we're getting into the thick of things: here is where we decide how to trigger the barcode
scan, and what to do when a barcode is scanned. Let's begin by enabling the scanner in the
AfterOpen event of the form. We also want to configure the extension so that the barcode
scanner is triggered when the center button on the Aceeca Meazura is pressed. Click on the
Scripts tab of the Workspace Palette, at the bottom left of the MobileApp Designer window. Click
on the + symbol by Form 1 in the list to expand it to show all of the event and control scripts on
the form. Select the AfterOpen event script, and the script editor window will appear. Type in
this AfterOpen script:

'confirm that we are running on an Aceeca device
if IDV_IsAceecaUnit() = True then
 'specify the BCS2 laser scanner module
 IDV_SetBCSType(2)
 'use center button as scan trigger
 IDV_SetScanTrigger(1, 516)
 'enable the scanner now
 IDV_EnableScanner()
else
 edBarcode = "NOT an Aceeca scanner!"
 'hide the Scan button
 btnScan.visible = false
endif

Your screen should look like this:

p206

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Now, let's make sure that we disable the scanner when we close the form. Select the
BeforeClose script from the list, and type in this script:

'confirm that we are running on an Aceeca device
if IDV_IsAceecaUnit() = True then
 'disable the scanner now
 IDV_DisableScanner()
endif

Step 4. Okay, now we need to add some script code to do something with the barcode data
when it is scanned. The Aceeca Meazura scanner signals that a barcode has been scanned by
posting a special MzBarcodeReceived virtual keypress (ASCII code decimal 7424) into the
device's key queue. We need to monitor the key queue looking for that special virtual key, and
grab the barcode data string when we see it. We'll play a high pitched confirmation beep to
indicate the successful scan, or a low frequency buzz if the scan was not successful. Here's the
OnKey event script code to type in (feel free to copy & paste right from this QuickStart Guide
article):

Dim Asckey, Virtkey, Modkey
GetLastKey(AscKey, VirtKey, ModKey)

'watch for the MzBarcodeReceived virtual key (7424)
if AscKey = 7424 then

'get the barcode data

p207

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

 edBarcode = IDV_GetScan(5)
 if edBarcode = "" then
 'barcode read failed
 edBarcode = "NO READ"
 'play failure tone
 Tone(400, 600, 64)
 else
 'play good read tone
 Tone(3800, 100, 64)
 endif
endif

Step 5. Okay, that is the bulk of it, but we still need to make the onscreen SCAN button trigger
the scan, in addition to the center hardware button. Select the SCAN button on the form, and
click on Edit Action in the control properties. Select Run Script from the list of actions, then
click on Edit Script. Type in this script to trigger the scan when the button is tapped:

'trigger the barcode scan
IDV_Trigger(True)

That's about it for the barcode scanning stuff. Let's give the application a name, compile it, and
test it out on the handheld.

Step 6. Click on the Edit > Project Properties menu, and give our application the name Aceeca
Scan Test, like this:

Click OK, and then save your project. Name it Aceeca Scan Test.sfa.

p208

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Now, compile the application by pressing the F7 hotkey (Rebuild All). If the compiler finds any
typos, fix them, and then Rebuild All again. Next, use the Handheld > Download App & Tables
menu option (or press the F5 hotkey) to send the application to your Aceeca Meazura device.
Connect the Meazura to the cradle or sync cable, and start the hotsync from the handheld.
Assuming you've already installed the Satellite Forms SDK runtime engine on the Meazura, your
application will be sent to the device during the hotsync. Launch the SatForms SDK app on the
handheld, select Aceeca Scan Test from the list, and you are ready to scan.

Point the scanner at a nearby barcode, press center hardware button or the onscreen SCAN
button on the Meazura, and the scanner should read the barcode and play a confirmation beep.
Here's a sample screenshot from the Meazura after reading a barcode:

Congratulations! You've just learned how to scan barcodes on the Aceeca Meazura scanner with
Satellite Forms!

There are plenty of additional functions in the scanner control to give you even more detailed
control over the scanning process, but you've got the basic scanning function covered just by
applying what you learned in the QuickStart Guide above.

Additional Sample Projects:
\Satellite Forms 7\Samples\Projects\IDVERIFI Barcode\IDVScanTest.sfa

Keywords: Aceeca, Meazura, MEZ1000, IDVERIFI, barcode, scanner, quickstart, PalmOS

KB ID: 10080
Updated: 2007-11-30

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p209

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Barcode Scanning on Intermec Windows
Mobile/PocketPC Scanners
QuickStart Guide to: Barcode Scanning on Intermec Windows
Mobile/PocketPC Scanners

Intermec manufactures several models of Windows Mobile/PocketPC rugged handhelds with
integrated barcode scanning capability. This QuickStart Guide shows you how to add Intermec
Windows Mobile/PocketPC barcode scanning support to your Satellite Forms application, quickly
and easily.

This QuickStart Guide contains plenty of screenshots to guide you through the process step by
step, but don't let the length of this article scare you: the entire process of building the barcode
scanning test application for the Intermec PocketPC scanners should only take about 15 minutes.

In order to control the Intermec barcode scanner, we'll utilize the IntermecScan plugin
extension that is included with Satellite Forms. This extension is written to work with the
Intermec scanner library that is preinstalled on most Intermec Windows Mobile/PocketPC
scanners.

Okay, let's build an Intermec Scan Test sample application step by step:

Step 1. Start a new project in Satellite Forms MobileApp designer, and select the PocketPC
platform target. A default form named Form 1 will be created, ready for you to add controls to.
Click in the middle of the form, so that the Control Palette Toolbar becomes active. Let's add a
form Title control, with the title text set to Intermec Scan Test. Next add a text control with
the label Barcode: and below that add an edit control named edBarcode that stretches across
the width of the form. Let's add a button control below that named btnScan, labeled SCAN,
using the Tahoma Bold 10 font, and enlarge it to make it easy to tap on with a finger. Leave the
button action set to No Action for now. Your form should look like this:

http://www.intermec.com

p210

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Step 2. The next step is to add the IntermecScan control extension to our project. Click on the

Manage Extensions toolbar icon which looks like this: A list of available extensions is
displayed. Do not select the one at the top named Bar Code Reader. Scroll down the list, and
select the IntermecScan extension, then click OK:

Step 3. Step 3. The IntermecScan extension is a custom SFX control, and not just a plugin script
extension. Although it is a custom control, the control is not actually visible to the end user: it is
only visible in form design view of MobileApp Designer. Because it is a custom control, an icon is
added to the Control Palette toolbar so that you can click on the icon to add the control to your

forms. The SFX icon looks like this and is added to the right end of the Control Palette
toolbar. If you do not see it, there's a good chance that part of the Control Palette toolbar is
simply being cut off because the MobileApp Designer window is not wide enough. That's easy to
solve, we'll just grab the Control palette toolbar "handle" and drag it down to the next line in the
MobileApp Designer desktop. Now we can see all the Control palette toolbar icons, like this:

Okay good, we can see all the toolbar icons now.

So, click on the SFX custom control toolbar icon so that we can add it to our form. It's possible

p211

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

you might have more than one custom control on a form and they all share the same toolbar
icon, so a selection box appears to let you choose the custom control you want, like this:

Click OK to select it, and the control then appears on our form as a little barcode symbol.
Remember, this custom control is not visible to the end user. Let's move it out of the way so it
does not overlap other controls, so your form should now look like this:

The default name that appears for the scanner control is IntermecScan1, and we'll leave it at
that default. With the scanner control selected, click the Edit Action button in the control
properties, and select Run Script from the Action Type droplist. This is the OnClick script for the
scanner control, and this event will be fired when a barcode is scanned.

p212

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Step 4. Alright, now we're getting into the thick of things: here is where we decide what to do
when a barcode is scanned. Click on Edit Script and the blank script editor window will open up.
In this script, we are going to use a script method of the scanner control to obtain the barcode
data that was scanned and place it into the edBarcode edit control on the form. Here's the script
code to type in (feel free to copy & paste right from this QuickStart Guide article):

'this OnClick event is fired when a barcode is scanned
edBarcode = IntermecScan1.GetScanData

Now, let's make it so the onscreen SCAN button can trigger the barcode scan, in addition to the
hardware scan buttons on the Intermec device. Select the SCAN button on the form, and click
on Edit Action in the control properties. Select Run Script from the list of actions, then click
on Edit Script. Type in this script to trigger the scan when the button is tapped:

'start scanner with timeout of 3000 ms
IntermecScan1.DoScan(3000)

Step 5. Okay, we need to do a couple more things to make barcode scanning work. What we
need to do is to make sure the device we're running on is really an Intermec barcode scanner,
and if so, make sure the scanner is enabled. If it is not an Intermec device, then we'll hide the
btnScan control on the form. So, in the form AfterOpen event script that gets fired when the
form is opened, confirm the scanner is enabled like this:

'if device is Intermec barcode scanner then
'confirm scanner is enabled

if IntermecScan1.IsIntermecScanner = True then
'confirm that scanning is enabled
if IntermecScan1.IsScannerEnabled = False then

IntermecScan1.ScannerEnable
endif

else
'warn user about no scanner
edBarcode = "Not Intermec scanner"

p213

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

'hide the SCAN button
btnScan.visible = false

endif

That's about it for the barcode scanning stuff. Let's give the application a name, compile it, and
test it out on the handheld.

Step 6. Click on the Edit > Project Properties menu, and give our application the name
Intermec Scan Test, like this:

Click OK, and then save your project. Name it Intermec Scan Test.sfa.

Now, compile the application by pressing the F7 hotkey (Rebuild All). If the compiler finds any
typos, fix them, and then Rebuild All again. Next, connect the Intermec scanner to the cradle or
sync cable, and use the Handheld > Download App & Tables menu option (or press the F5
hotkey) to download the application to your Intermec Windows Mobile/PocketPC scanner device.
Launch the SatForms SDK app on the handheld, select Intermec Scan Test from the list, and you
are ready to scan.

Point the scanner at a nearby barcode, press one of the scan buttons on the Intermec unit, and
you the scanner should read the barcode and play a confirmation beep. Here's a sample
screenshot from a Intermec CN2B screen:

p214

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Congratulations! You've just learned how to scan barcodes on Intermec Windows
Mobile/PocketPC scanners with Satellite Forms!

There are plenty of additional functions in the scanner control to give you even more detailed
control over the scanning process, but you've got the basic scanning function covered just by
applying what you learned in the QuickStart Guide above.

Additional Sample Projects:
\Satellite Forms 7\Samples\Projects\IntermecScan\IntermecScan.sfa

Keywords: Intermec, barcode, scanner, quickstart, PocketPC, Windows Mobile, CN2B

KB ID: 10081
Updated: 2007-12-03

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p215

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Barcode Scanning on Unitech Windows
Mobile/PocketPC Scanners
QuickStart Guide to: Barcode Scanning on Unitech Windows
Mobile/PocketPC Scanners

Unitech manufactures several models of Windows Mobile/PocketPC rugged handhelds with
integrated barcode scanning capability. This QuickStart Guide shows you how to add Unitech
Windows Mobile/PocketPC barcode scanning support to your Satellite Forms application, quickly
and easily.

This QuickStart Guide contains plenty of screenshots to guide you through the process step by
step, but don't let the length of this article scare you: the entire process of building the barcode
scanning test application for the Unitech PocketPC scanners should only take about 15 minutes.

In order to control the Unitech barcode scanner, we'll utilize the UnitechScan plugin extension
that is included with Satellite Forms. This extension is written to work with the Unitech scanner
library that is preinstalled on most Unitech Windows Mobile/PocketPC scanners.

Okay, let's build an Unitech Scan Test sample application step by step:

Step 1. Start a new project in Satellite Forms MobileApp designer, and select the PocketPC
platform target. A default form named Form 1 will be created, ready for you to add controls to.
Click in the middle of the form, so that the Control Palette Toolbar becomes active. Let's add a
form Title control, with the title text set to Unitech Scan Test. Next add a text control with the
label Barcode: and below that add an edit control named edBarcode that stretches across the
width of the form. Your form should look like this:

Step 2. The next step is to add the UnitechScan control extension to our project. Click on the

Manage Extensions toolbar icon which looks like this: A list of available extensions is

http://www.ute.com

p216

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

displayed. Do not select the one at the top named Bar Code Reader. Scroll down to the bottom
of the list, and select the UnitechScan extension, then click OK:

Step 3. Step 3. The UnitechScan extension is a custom SFX control, and not just a plugin script
extension. Although it is a custom control, the control is not actually visible to the end user: it is
only visible in form design view of MobileApp Designer. Because it is a custom control, an icon is
added to the Control Palette toolbar so that you can click on the icon to add the control to your

forms. The SFX icon looks like this and is added to the right end of the Control Palette
toolbar. If you do not see it, there's a good chance that part of the Control Palette toolbar is
simply being cut off because the MobileApp Designer window is not wide enough. That's easy to
solve, we'll just grab the Control palette toolbar "handle" and drag it down to the next line in the
MobileApp Designer desktop. Now we can see all the Control palette toolbar icons, like this:

Okay good, we can see all the toolbar icons now.

So, click on the SFX custom control toolbar icon so that we can add it to our form. It's possible
you might have more than one custom control on a form and they all share the same toolbar
icon, so a selection box appears to let you choose the custom control you want, like this:

p217

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Click OK to select it, and the control then appears on our form as a little barcode symbol.
Remember, this custom control is not visible to the end user. Let's move it out of the way so it
does not overlap other controls, so your form should now look like this:

The default name that appears for the scanner control is UnitechScan1, and we'll leave it at that
default. With the scanner control selected, click the Edit Action button in the control properties,
and select Run Script from the Action Type droplist. This is the OnClick script for the scanner
control, and this event will be fired when a barcode is scanned.

p218

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Step 4. Alright, now we're getting into the thick of things: here is where we decide what to do
when a barcode is scanned. Click on Edit Script and the blank script editor window will open up.
In this script, we are going to use a script method of the scanner control to obtain the barcode
data that was scanned and place it into the edBarcode edit control on the form. Here's the script
code to type in (feel free to copy & paste right from this QuickStart Guide article):

'this OnClick event is fired when a barcode is scanned
edBarcode = UnitechScan1.GetScanData

Step 5. Okay, we need to do a couple more things to make barcode scanning work. What we
need to do is to make sure the device we're running on is really an Unitech barcode scanner, and
if so, make sure the scanner is enabled. We also need to disable the scanner when we leave the
form. So, in the form AfterOpen event script that gets fired when the form is opened, confirm
the scanner is enabled like this:

'if device is Unitech barcode scanner then
'enable scanner in AfterOpen event and
'disable in BeforeClose event

if UnitechScan1.IsUnitechScanner = True then
'enable scanning
UnitechScan1.ScannerEnable

else
'warn user about no scanner
edBarcode = "Not Unitech scanner"

endif

And in the form BeforeClose event, disable the barcode scanner like this:

'if device is Unitech barcode scanner then
'disable in BeforeClose event

if UnitechScan1.IsUnitechScanner = True then
'disable scanning

p219

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

UnitechScan1.ScannerDisable
endif

That's about it for the barcode scanning stuff. Let's give the application a name, compile it, and
test it out on the handheld.

Step 6. Click on the Edit > Project Properties menu, and give our application the name Unitech
Scan Test, like this:

Click OK, and then save your project. Name it Unitech Scan Test.sfa.

Now, compile the application by pressing the F7 hotkey (Rebuild All). If the compiler finds any
typos, fix them, and then Rebuild All again. Next, connect the Unitech scanner to the cradle or
sync cable, and use the Handheld > Download App & Tables menu option (or press the F5
hotkey) to download the application to your Unitech Windows Mobile/PocketPC scanner device.
Launch the SatForms SDK app on the handheld, select Unitech Scan Test from the list, and you
are ready to scan.

Point the scanner at a nearby barcode, press one of the scan buttons on the Unitech unit, and
you the scanner should read the barcode and play a confirmation beep. Here's a sample
screenshot from a Unitech PA950 screen:

p220

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Congratulations! You've just learned how to scan barcodes on Unitech Windows Mobile/PocketPC
scanners with Satellite Forms!

There are plenty of additional functions in the scanner control to give you even more detailed
control over the scanning process, but you've got the basic scanning function covered just by
applying what you learned in the QuickStart Guide above.

Additional Sample Projects:
\Satellite Forms 7\Samples\Projects\Unitech Scan\UnitechScan.sfa

Keywords: Unitech, barcode, scanner, quickstart, PocketPC, Windows Mobile, PA950, PA500,
PA600

KB ID: 10082
Updated: 2007-12-03

Satellite Forms KnowledgeBase Online
Satellite Forms Website Home

-o-

http://www.satelliteforms.net/KB/
http://www.satelliteforms.net/

p221

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Index

 - 1 -
10 digit 42
1050 12
127 34

- 2 -
2002 50
2003 50

- 5 -
5V Power Out 174

- A -
Aceeca 203
ActiveSync 62, 54, 73, 13, 79, 120
activex 63, 47
administrator 47
alternate shape 22
An invisible 'hotspot' button is still clickable on PocketPC 31
AppDsn.tlb 47
authenticode 47

- B -
Bar Code Reader 174
barcode 21, 25, 174, 189, 196, 41, 203, 209, 215
Barcode Scanning on Aceeca Meazura PalmOS Scanners 203
Barcode Scanning on Intermec Windows Mobile/PocketPC Scanners 209
Barcode Scanning on Janam XP PalmOS Scanners 189
Barcode Scanning on Symbol Windows Mobile/PocketPC Scanners 196
Barcode Scanning on Unitech Windows Mobile/PocketPC Scanners 215
binarysearch 152, 26, 175, 44, 43
Binarysearch function is not case sensitive on PocketPC PDB 43
Binarysearch function returns incorrect row number when no match on PocketPC PDB 44
binsearch 152, 43
bitmap 58, 63, 9, 103, 32, 28
Bitmap buttons behave differently on different PalmOS versions 9
bug 26
Bug in Binarysearch function with PocketPC PDB 26
bugs 19
build 100

p222

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

bundle 133
button 9, 31

- C -
CAB 54, 83, 135
CABWiz 83, 135
cache 162
call 160
Cannot set droplist caption in code on PocketPC 36
capitals 158
caption 36
card 174
case 43
CDB 120, 100, 33
CERDKInst 149
char 156
checkbox 22
click 154, 31
close 30, 166
CN2B 209
color 58, 96, 103, 105
commit 162, 166
commitdata 166
commitdatabase 162
compile 28
compiler 52
control 17, 118, 96
conversion 120
convert 120
coordinate 118
create launcher icon 28
CreateFlag 120, 166
currentpage 17

- D -
data 56
database 62, 56, 49, 120, 46, 34, 166
DBF 62, 49, 120, 46
delete 39
Deleting a record causes 'Error 30: Table won't open or invalid' on PocketPC PDB 39
Delphi 79
deployment 135, 133, 149
desktop 46
DIA 107
dial 160
dialog 27
dimensions 37
display 63, 37
DLL 12
DLL error when installing application at Hotsync 12
dmsyncdatabase 162
double-tap 35
droplist 45, 36
dynamic 107

p223

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

- E -
Edit 18
email 161
error 12, 16, 17, 41, 39
Error C016: Method 'Controls.SetPosition' takes 4 param(s) : 1 specified 23
Error compiling PocketPC target on PC with ActiveSync 4.0 13
Error locating third party PocketPC extensions when loading project 16
Error: Referenced control not on current page 17
expandable 107
extension 12, 16, 52

- F -
field 34, 33
filter 45, 42
Find 18, 152, 175
Find In Project does not always work 18
flag 120, 166
Form needs to be tapped by pen before accepting keyboard input on PocketPC 38
Form Scrollbars do not Appear Automatically in PocketPC 37
freeze 40
FTP 120
function 52

- G -
GetLastKey 158, 156, 38
GetPenStatus 154, 35
GetPosition 154
global 52, 154
graphic 58

- H -
HD 103, 105
height 118
high density 103, 105
hotspot 31
Hotsync 12, 49, 120, 47
How to Beam Files via IR or Bluetooth on PocketPC 169
How To Bundle the SatForms PocketPC runtime engine with your app 133
How To Change a control color using SFControlMagic 96
How To Change Control Fonts at Runtime 129
How To Change The CreatorID of a Palm Extension PRC To Match Your App 185
How To Commit Table Data to Storage Immediately 162
How To Create a shortcut to your PocketPC application 149
How To Create an Installer for your SatForms 6.x PocketPC Application 83
How To Create an Installer for your SatForms 7 PocketPC Application 135
How To Dial a Phone Number Using the LaunchURL Extension 160
How To Enable a User to Interrupt a Closed Loop 131
How To Enable Newer 2D Barcode Types on Janam Scanners 182
How To Force Input To ALL CAPS 158
How To Implement a Quick Find feature 152

p224

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

How To Insert New Records Into a Sorted Table 175
How To Install SatForms PocketPC Runtime to multiple handhelds 73
How To Install the SatForms Runtime for Palm silently 77
How To Install the SatForms Runtime for PocketPC Programmatically 54
How To Limit Edit Control Input to Numeric Only 156
How To Make PocketPC PDB Apps Close Faster 166
How To make Satellite Forms 6.1 PocketPC applications launch faster 56
How To Move and Resize Controls at Runtime 118
How To Send an Email Message Using the LaunchURL Extension 161
How To support Expandable Screens in PalmOS applications 107
How To support multiple languages using build targets 94
How To Sync Satellite Forms Data to a Linux Server With jSyncManager 171
How To Use a Specific Connection using ConnectionMgr 180
How To use color bitmaps in your application 58
How To use different platform targets for PocketPC applications 50
How To use Global Functions & Subs to replace extension functions not available on the current target
platforms
How To Use Google Maps for Windows Mobile from your Satellite Forms application 177
How To use High Density Bitmaps in PalmOS applications 103
How To use High Density Icons for your PalmOS applications 105
How To Use OnPenDown/OnPenUp Scripts to Detect Pen Taps on Controls 154
How To use PalmDB (PDB) tables in a PocketPC application 100
How To use SatSync to send data to the Palm device 49
How To use SatSyncPPC to send data to the PocketPC device 62
How To use SatSyncPPC to sync PocketPC data 127
How To use the Ink View OCX to display uploaded signatures on the PC 63
How To Use the MSR Attachment with Janam XP Scanners in Satellite Forms 174
How To use the PocketPC Emulator with Satellite Forms 97
How To use the SatForms ActiveSync control with Delphi 79
How To use the SFConvertPDB utility 120

- I -
icon 9, 105, 30, 28
IDVERIFI 203
image 58, 63, 103, 32
imager 41
incremental 152
index 56
INF 16
ink 63, 32
Ink control does not allow bitmap overlay on PocketPC 32
inkview 63
input 38
input area 107
install 54, 73, 77, 83, 135, 133, 149
installation 135
installer 83, 135, 149
Intermec 209
internationalization 94
Introduction 6
invalid 39
inventory 175
IsNumericInput 156
IsUppercaseInput 158

p225

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

- J -
Janam 174, 196, 189, 40
Janam XP20/XP30 scanner powers off but needs to be reset to turn back on 40
Java 171
jSyncManager 171

- K -
keyboard 38
known issues 19
Known Issues for Satellite Forms 6.1 19

- L -
landscape 37
language 94
laser 25
launch 56, 30, 160
LaunchURL 161, 160
library 41
LifeDrive 107
Linux 171
listbox 34
localization 94
locate 175
location 118, 44
lockup 40
logo 58, 103
lookup 152

- M -
Magnetic Stripe Reader 174
mail 161
MC50 196, 41
MC70 196
MDB 62, 49, 120, 46
Meazura 203
memory 41
message 161, 160
messagebox 27
MEZ1000 203
Michael Schwarz 171
move 118
MoveRecord 175
msgbox 27
msi 77
MSR 174
multiple 73

p226

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

- N -
NoAutoCommit 120, 166
NSIS 83
numeric 156, 42
NVFS 162

- O -
ocx 63, 54
onclick 9
OnKey 158, 156, 38
OnPenDown 154, 31, 35
OnPenUp 154, 31, 35
open source 171
overlay 32

- P -
PA500 215
PA600 215
PA950 215
page 17
palm 77, 100
PalmDataPro 96
PalmOS 49, 107, 189, 203
Patch 70002 42
PDB 120, 100, 26, 166, 44, 43, 42, 34
pen 154, 38, 35
pen tap 31
Pen tap on Text or Lookup control generates 2 OnPenDown events on PocketPC 35
PenTapInControl 154, 35
performance 56, 175
phone 160
picture 103
pixel 103
platform 52, 50, 22, 100, 36
PocketPC 21, 62, 56, 16, 54, 73, 13, 50, 79, 135, 22, 100, 26, 133, 149, 33, 27, 196, 46, 45, 44, 43, 42, 41, 39,
36, 34, 209, 215
PocketPC app is relaunched after it is closed 30
PocketPC CDB application cannot handle more than 127 fields per table 33
PocketPC device crashes when Symbol control used in app on non-Symbol PPC device 21
PocketPC PDB listbox problems with more than 127 table fields 34
PocketPC PDB problems filtering a record using a 10 digit numeric field 42
PocketPC project settings automatically change to MDB desktop DB format when project is loaded 46
PocketPC RemoveFilter function does not remove filter on droplist table 45
PocketPC target requires icon bitmap to compile even though it is not used 28
pointer 39
portrait 37
position 44
power 40
print 29
print all 29
Problem with alternate-shape checkboxes in PocketPC targets created from Palm target 22
Problems printing scripts in App Designer 29

p227

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

project 46, 28
prompt 27
promptcustom 27
PromptCustom may cut off some text on PocketPC 27
properties 46, 28
protection 162

- Q -
quick 152
QuickSort 175
quickstart 189, 196, 203, 209, 215
QVGA 37

- R -
radio button 22
RDKInst 47
Read-Only 120, 166
record 33, 39
red circle 105
relaunch 30
removefilter 45
Replace 18
reset 162
resize 118
restart 30
ROM 40
runtime 54, 73, 77, 133

- S -
sandwich 9
SatSync 62, 49
SatSyncPPC 62
save 162
scanner 21, 25, 189, 196, 41, 40, 203, 209, 215
screen 37
scroll 37
scrollbar 37
SDIO 25
SDSC 3M 25
Search 18, 152, 175
sensitive 43
serial 174
settings 46
setup 77, 83, 135, 133, 149
SF-00328 26
SFControlMagic 96
SFConvertPDB 120, 166
SFrmUt 13
SFTempTable.cdb 13
shortcut 149
signature 63, 32
silent 77

p228

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

size 118, 37
Socket 25
SocketScan 25
SocketScan PalmOS control does not work with laser SDIO scanner 25
soft Graffiti 107
sort 175, 44, 43
speed 56, 175, 166
square 37
StartApp 54
storage 162
sub 52
Symbol 21, 189, 196, 41
Symbol MC50 scanner shows Error Enabling Scanner Library after scanning for a while 41
sync 120
synchronization 120
SYS_POSIDX 56
SYS_POSITION 56

- T -
T3 107
T5 107
table 62, 49, 100, 33, 166
tap 154, 35
target 52, 50, 22, 100
targets 94
TCPIP 120
Technodane 171
telephone 160
template 32
transfer 120
TX 107
typeahead 152

- U -
uninstall 135
Unitech 215
Unix 171
upper case 158
URL 161, 160

- V -
validate 156
virtual Graffiti 107
visible 31

- W -
wceload 54
width 118
WinCE.NET 50
Windows Mobile 135, 26, 133, 149, 196, 209, 215

p229

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

Windows Mobile 5 13
Windows Vista 47
Windows Vista Compatibility Issues 47
WinMobile 5 13, 50
WM5 26
write 162

- X -
XM60 196
XP 174, 189
XP20 189, 40
XP30 189, 40

p230

© 2010 Thacker Network Technologies Inc.

http://www.satelliteforms.net/

	Table of Contents
	Introduction
	Known Issues
	Bitmap buttons behave differently on different PalmOS versions
	DLL error when installing application at Hotsync
	Error compiling PocketPC target on PC with ActiveSync 4.0
	Error locating third party PocketPC extensions when loading project
	Error: Referenced control not on current page
	Find In Project does not always work
	Known Issues for Satellite Forms 6.1
	PocketPC device crashes when Symbol control used in app on non-Symbol PPC device
	Problem with alternate-shape checkboxes in PocketPC targets created from Palm target
	Error C016: Method 'Controls.SetPosition' takes 4 param(s) : 1 specified
	SocketScan PalmOS control does not work with laser SDIO scanner
	Bug in Binarysearch function with PocketPC PDB
	PromptCustom may cut off some text on PocketPC
	PocketPC target requires icon bitmap to compile even though it is not used
	Problems printing scripts in App Designer
	PocketPC app is relaunched after it is closed
	An invisible 'hotspot' button is still clickable on PocketPC
	Ink control does not allow bitmap overlay on PocketPC
	PocketPC CDB application cannot handle more than 127 fields per table
	PocketPC PDB listbox problems with more than 127 table fields
	Pen tap on Text or Lookup control generates 2 OnPenDown events on PocketPC
	Cannot set droplist caption in code on PocketPC
	Form Scrollbars do not Appear Automatically in PocketPC
	Form needs to be tapped by pen before accepting keyboard input on PocketPC
	Deleting a record causes 'Error 30: Table won't open or invalid' on PocketPC PDB
	Janam XP20/XP30 scanner powers off but needs to be reset to turn back on
	Symbol MC50 scanner shows Error Enabling Scanner Library after scanning for a while
	PocketPC PDB problems filtering a record using a 10 digit numeric field
	Binarysearch function is not case sensitive on PocketPC PDB
	Binarysearch function returns incorrect row number when no match on PocketPC PDB
	PocketPC RemoveFilter function does not remove filter on droplist table
	PocketPC project settings automatically change to MDB desktop DB format when project is loaded
	Windows Vista Compatibility Issues

	How-To Guides
	How To use SatSync to send data to the Palm device
	How To use different platform targets for PocketPC applications
	How To use Global Functions & Subs to replace extension functions not available on the current target platforms
	How To Install the SatForms Runtime for PocketPC Programmatically
	How To make Satellite Forms 6.1 PocketPC applications launch faster
	How To use color bitmaps in your application
	How To use SatSyncPPC to send data to the PocketPC device
	How To use the Ink View OCX to display uploaded signatures on the PC
	How To Install SatForms PocketPC Runtime to multiple handhelds
	How To Install the SatForms Runtime for Palm silently
	How To use the SatForms ActiveSync control with Delphi
	How To Create an Installer for your SatForms 6.x PocketPC Applications
	How To support multiple languages using build targets
	How To Change a control color using SFControlMagic
	How To use the PocketPC Emulator with Satellite Forms
	How To use PalmDB (PDB) tables in a PocketPC application
	How To use High Density Bitmaps in PalmOS applications
	How To use High Density Icons for your PalmOS applications
	How To support Expandable Screens in PalmOS applications
	How To Move and Resize Controls at Runtime
	How To use the SFConvertPDB utility
	How To use SatSyncPPC to sync PocketPC data
	How To Change Control Fonts at Runtime
	How To Enable a User to Interrupt a Closed Loop
	How To Bundle the SatForms PocketPC runtime engine with your app
	How To Create an Installer for your SatForms 7 PocketPC Application
	How To Create a shortcut to your PocketPC application
	How To Implement a Quick Find feature
	How To Use OnPenDown/OnPenUp Scripts to Detect Pen Taps on Controls
	How To Limit Edit Control Input to Numeric Only
	How To Force Input To ALL CAPS
	How To Dial a Phone Number Using the LaunchURL Extension
	How To Send an Email Message Using the LaunchURL Extension
	How To Commit Table Data to Storage Immediately
	How To Make PocketPC PDB Apps Close Faster
	How to Beam Files via IR or Bluetooth on PocketPC
	How To Sync Satellite Forms Data to a Linux Server With jSyncManager
	How To Use the MSR Attachment with Janam XP Scanners in Satellite Forms
	How To Insert New Records Into a Sorted Table
	How To Use Google Maps for Windows Mobile from your Satellite Forms application
	How To Use a Specific Connection using ConnectionMgr
	How To Enable Newer 2D Barcode Types on Janam Scanners
	How To Change The CreatorID of a Palm Extension PRC To Match Your App

	QuickStart Guides
	Barcode Scanning on Janam XP PalmOS Scanners
	Barcode Scanning on Symbol Windows Mobile/PocketPC Scanners
	Barcode Scanning on Aceeca Meazura PalmOS Scanners
	Barcode Scanning on Intermec Windows Mobile/PocketPC Scanners
	Barcode Scanning on Unitech Windows Mobile/PocketPC Scanners

